Two-pronged approach to immune activation could lead to vaccines that effectively shut down tumor expansion

April 26, 2013, RIKEN
Artificial adjuvant vector cells (aAVCs) were produced by introducing mRNA-encoding tumor-specific antigens to human kidney cells dosed with the synthetic compound α-galactosylceramide, which activates NKT cells. Credit: 2013 Shin-ichiro Fujii, RIKEN Research Center for Allergy and Immunology

Tumor cells often express proteins that set them apart from their healthy neighbors. These very same proteins can also help the immune system to recognize and destroy the cancer. Several research groups and companies have already demonstrated proof-of-concept for antitumor therapeutic vaccines based on this principle, typically employing 'retrained' dendritic cells (DCs) harvested from a patient's own immune system. To date, however, such vaccines have demonstrated only limited effectiveness in beating back tumor progression. Shin-ichiro Fujii, Kanako Shimizu and colleagues from the RIKEN Research Center for Allergy and Immunology have now revealed research that could supercharge the potency of future cancer vaccines.

DC-based vaccines directly stimulate 'adaptive' immunity, which is directed against specific . "DCs play a pivotal role in determining the character and magnitude of an immune response," explains Fujii, "and the loading of patient DCs with tumor-specific antigens is one of the most promising current immunotherapeutic strategies."

Using a mouse model, Fujii's team demonstrated that the natural antitumor DC response can be considerably ramped up by stimulating invariant natural killer T (iNKT) cells from the 'innate' immune system, which triggers a more generalized response against disease.

Key to their iNKT cell-based strategy is the use of artificial adjuvant vector cells (aAVCs), derived from . The aAVCs are dosed with mRNA encoding a tumor-specific antigen to yield a protein that trains DCs to recognize their 'enemy'. The aAVCs are also treated with α-galactosylceramide, a synthetic glycolipid that is a potent activator of iNKT cells. The iNKT cells go on to accelerate maturation of host DCs, which in turn promote adaptive immune response against the selected .

Initial experiments demonstrated that aAVCs producing the protein ovalbumin activated DCs in mice and effectively stalled growth of grafted tumors expressing this protein. Importantly, this treatment proved more effective than a conventional vaccine approach using DCs injected with ovalbumin mRNA. Subsequent experiments confirmed that aAVCs could also elicit immunity against the melanoma antigen MART-1. "Even the injection of one cell could evoke both the innate and ," says Fujii.

Further tests using dog models revealed a clear immune response with no notable adverse effects, even in animals receiving multiple doses of aAVCs. These promising preclinical results could potentially pave the way for human clinical trials in the near future. "We have some candidate tumor antigens," says Fujii, "and now we need to examine the possibility of using this technique for these antigens in terms of efficacy and safety."

Explore further: Jump-starting cheaper cancer vaccines

More information: Shimizu, K. et al. Vaccination with antigen-transfected, NKT cell ligand-loaded, human cells elicits robust in situ immune responses by dendritic cells. Cancer Research 173, 62–73 (2013). dx.doi.org/10.1158/0008-5472.CAN-12-0759

Related Stories

Jump-starting cheaper cancer vaccines

September 26, 2012
Dendritic cells (DCs)—workhorses of the immune system—derived from human embryonic stem cells (hESCs) may provide an economical way of generating off-the-shelf therapeutic vaccines against cancers, according to research ...

Recently uncovered human counterparts to a subset of mouse immune cells may enable better vaccination strategies

October 24, 2012
Mice have made an immeasurable contribution to medicine and our overall understanding of human disease. This animal model is not without its limitations, however, and scientists are continually learning about important ways ...

'Gatekeeper' protein helps immune cells to sound a warning after encountering signs of tumor growth or infection

February 3, 2012
When the body’s own cells turn into ticking time bombs, as in cases of viral infection or cancerous transformation, a mechanism known as ‘cross-presentation’ enables the immune system’s dendritic cells ...

Recommended for you

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Dietary fat, changes in fat metabolism may promote prostate cancer metastasis

January 15, 2018
Prostate tumors tend to be what scientists call "indolent" - so slow-growing and self-contained that many affected men die with prostate cancer, not of it. But for the percentage of men whose prostate tumors metastasize, ...

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.