Two-pronged approach to immune activation could lead to vaccines that effectively shut down tumor expansion

April 26, 2013
Artificial adjuvant vector cells (aAVCs) were produced by introducing mRNA-encoding tumor-specific antigens to human kidney cells dosed with the synthetic compound α-galactosylceramide, which activates NKT cells. Credit: 2013 Shin-ichiro Fujii, RIKEN Research Center for Allergy and Immunology

Tumor cells often express proteins that set them apart from their healthy neighbors. These very same proteins can also help the immune system to recognize and destroy the cancer. Several research groups and companies have already demonstrated proof-of-concept for antitumor therapeutic vaccines based on this principle, typically employing 'retrained' dendritic cells (DCs) harvested from a patient's own immune system. To date, however, such vaccines have demonstrated only limited effectiveness in beating back tumor progression. Shin-ichiro Fujii, Kanako Shimizu and colleagues from the RIKEN Research Center for Allergy and Immunology have now revealed research that could supercharge the potency of future cancer vaccines.

DC-based vaccines directly stimulate 'adaptive' immunity, which is directed against specific . "DCs play a pivotal role in determining the character and magnitude of an immune response," explains Fujii, "and the loading of patient DCs with tumor-specific antigens is one of the most promising current immunotherapeutic strategies."

Using a mouse model, Fujii's team demonstrated that the natural antitumor DC response can be considerably ramped up by stimulating invariant natural killer T (iNKT) cells from the 'innate' immune system, which triggers a more generalized response against disease.

Key to their iNKT cell-based strategy is the use of artificial adjuvant vector cells (aAVCs), derived from . The aAVCs are dosed with mRNA encoding a tumor-specific antigen to yield a protein that trains DCs to recognize their 'enemy'. The aAVCs are also treated with α-galactosylceramide, a synthetic glycolipid that is a potent activator of iNKT cells. The iNKT cells go on to accelerate maturation of host DCs, which in turn promote adaptive immune response against the selected .

Initial experiments demonstrated that aAVCs producing the protein ovalbumin activated DCs in mice and effectively stalled growth of grafted tumors expressing this protein. Importantly, this treatment proved more effective than a conventional vaccine approach using DCs injected with ovalbumin mRNA. Subsequent experiments confirmed that aAVCs could also elicit immunity against the melanoma antigen MART-1. "Even the injection of one cell could evoke both the innate and ," says Fujii.

Further tests using dog models revealed a clear immune response with no notable adverse effects, even in animals receiving multiple doses of aAVCs. These promising preclinical results could potentially pave the way for human clinical trials in the near future. "We have some candidate tumor antigens," says Fujii, "and now we need to examine the possibility of using this technique for these antigens in terms of efficacy and safety."

Explore further: Jump-starting cheaper cancer vaccines

More information: Shimizu, K. et al. Vaccination with antigen-transfected, NKT cell ligand-loaded, human cells elicits robust in situ immune responses by dendritic cells. Cancer Research 173, 62–73 (2013). dx.doi.org/10.1158/0008-5472.CAN-12-0759

Related Stories

Jump-starting cheaper cancer vaccines

September 26, 2012
Dendritic cells (DCs)—workhorses of the immune system—derived from human embryonic stem cells (hESCs) may provide an economical way of generating off-the-shelf therapeutic vaccines against cancers, according to research ...

Recently uncovered human counterparts to a subset of mouse immune cells may enable better vaccination strategies

October 24, 2012
Mice have made an immeasurable contribution to medicine and our overall understanding of human disease. This animal model is not without its limitations, however, and scientists are continually learning about important ways ...

'Gatekeeper' protein helps immune cells to sound a warning after encountering signs of tumor growth or infection

February 3, 2012
When the body’s own cells turn into ticking time bombs, as in cases of viral infection or cancerous transformation, a mechanism known as ‘cross-presentation’ enables the immune system’s dendritic cells ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.