Adult stem cells could hold key to curing Type 1 diabetes

May 29, 2013, University of Missouri School of Medicine
University of Missouri scientist Habib Zaghouani, Ph.D., is developing a potential cure for type 1 diabetes by combining adult stem cells with a promising new drug he developed at MU. His research is published in Diabetes, the American Diabetes Association's flagship research publication. Credit: University of Missouri Health System

Millions of people with type 1 diabetes depend on daily insulin injections to survive. They would die without the shots because their immune system attacks the very insulin-producing cells it was designed to protect. Now, a University of Missouri scientist has discovered that this attack causes more damage than scientists realized. The revelation is leading to a potential cure that combines adult stem cells with a promising new drug.

The discovery is reported in the current online issue of Diabetes, the 's flagship research publication. Habib Zaghouani, PhD, J. Lavenia Edwards Chair in Pediatrics, leads the research with his team at the MU School of Medicine.

"We discovered that type 1 diabetes destroys not only insulin-producing cells but also blood vessels that support them," Zaghouani said. "When we realized how important the blood vessels were to , we developed a cure that combines a drug we created with adult stem cells from bone marrow. The drug stops the immune system attack, and the stem cells generate new blood vessels that help insulin-producing cells to multiply and thrive."

Surrounded by an army of students and a colony of mice, Zaghouani has spent the past 12 years in his lab at MU studying autoimmune diseases like type 1 diabetes. Often called juvenile diabetes, the disease can lead to numerous complications, including cardiovascular disease, , , osteoporosis and blindness.

Type 1 diabetes attacks the pancreas. The organ, which is about the size of a hand and located in the abdomen, houses cell clusters called islets. Islets contain that make insulin, which controls . In people with type 1 diabetes, beta cells no longer make insulin because the body's immune system has attacked and destroyed them.

When the immune system strikes the beta cells, the attack causes to capillaries that carry blood to and from the islets. The damage done to the tiny blood vessels led Zaghouani on a new path toward a cure.

In previous studies, Zaghouani and his team developed a drug against type 1 diabetes called Ig-GAD2. They found that treatment with the drug stopped the immune system from attacking beta cells, but too few beta cells survived the attack to reverse the disease. In his latest study, Zaghouani used Ig-GAD2 and then injected from bone marrow into the pancreas in the hope that the stem cells would evolve into beta cells.

"The combination of Ig-GAD2 and bone marrow cells did result in production of new beta cells, but not in the way we expected," Zaghouani said. "We thought the bone marrow cells would evolve directly into beta cells. Instead, the bone marrow cells led to growth of new blood vessels, and it was the blood vessels that facilitated reproduction of new beta cells. In other words, we discovered that to cure type 1 diabetes, we need to repair the blood vessels that allow the subject's beta cells to grow and distribute insulin throughout the body."

Zaghouani is pursuing a patent for his promising treatment and hopes to translate his discovery from use in mice to humans. He is continuing his research with funding from the National Institutes of Health and MU.

"This is extremely exciting for our research team," he said. "Our discovery about the importance of restoring blood vessels has the potential to be applied not only to but also a number of other autoimmune diseases."

Explore further: Pancreas stem cell discovery may lead to new diabetes treatments

More information: diabetes.diabetesjournals.org/ … 7/db12-1281.abstract

Related Stories

Pancreas stem cell discovery may lead to new diabetes treatments

November 14, 2012
(Medical Xpress)—Stem cells in the adult pancreas have been identified that can be turned into insulin producing cells, a finding that means people with type 1 diabetes might one day be able to regenerate their own insulin-producing ...

Connexins: Providing protection to cells destroyed in Type 1 diabetes

November 7, 2011
Type 1 diabetes is a lifelong disease characterized by high levels of sugar (glucose) in the blood. It is caused by the patient's immune system attacking and destroying the cells in their pancreas that produce the hormone ...

Study sheds light on bone marrow stem cell therapy for pancreatic recovery

October 2, 2012
Researchers at Cedars-Sinai's Maxine Dunitz Neurosurgical Institute have found that a blood vessel-building gene boosts the ability of human bone marrow stem cells to sustain pancreatic recovery in a laboratory mouse model ...

No rebirth for insulin secreting pancreatic beta cells

April 24, 2013
Pancreatic beta cells store and release insulin, the hormone responsible for stimulating cells to convert glucose to energy. The number of beta cells in the pancreas increases in response to greater demand for insulin or ...

Fractalkine: New protein target for controlling diabetes

April 11, 2013
Researchers at the University of California, San Diego School of Medicine have identified a previously unknown biological mechanism involved in the regulation of pancreatic islet beta cells, whose role is to produce and release ...

Immune protein could stop diabetes in its tracks

May 20, 2013
Melbourne researchers have identified an immune protein that has the potential to stop or reverse the development of type 1 diabetes in its early stages, before insulin-producing cells have been destroyed.

Recommended for you

Diabetes gene found that causes low and high blood sugar levels in the same family

January 15, 2018
A study of families with rare blood sugar conditions has revealed a new gene thought to be critical in the regulation of insulin, the key hormone in diabetes.

Discovery could lead to new therapies for diabetics

January 12, 2018
New research by MDI Biological Laboratory scientist Sandra Rieger, Ph.D., and her team has demonstrated that an enzyme she had previously identified as playing a role in peripheral neuropathy induced by cancer chemotherapy ...

Enzyme shown to regulate inflammation and metabolism in fat tissue

January 11, 2018
The human body has two primary kinds of fat—white fat, which stores excess calories and is associated with obesity, and brown fat, which burns calories in order to produce heat and has garnered interest as a potential means ...

Big strides made in diabetes care

January 5, 2018
(HealthDay)—This past year was a busy, productive one for diabetes research and care.

Gene therapy restores normal blood glucose levels in mice with type 1 diabetes

January 4, 2018
Type 1 diabetes is a chronic disease in which the immune system attacks and destroys insulin-producing beta cells in the pancreas, resulting in high blood levels of glucose. A study published January 4th in Cell Stem Cell ...

Goodbye, needles? Patch might be the future for blood-sugar tracking

January 4, 2018
(HealthDay)—Developers of a new patch hope to eliminate a big barrier in type 2 diabetes treatment—painful finger-sticks and injections. The new patch—which actually uses an array of tiny needles that researchers promise ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.