Cancer drug prevents build-up of toxic brain protein

May 10, 2013, Georgetown University Medical Center

Researchers at Georgetown University Medical Center have used tiny doses of a leukemia drug to halt accumulation of toxic proteins linked to Parkinson's disease in the brains of mice. This finding provides the basis to plan a clinical trial in humans to study the effects.

They say their study, published online May 10 in Human Molecular Genetics, offers a unique and exciting strategy to treat neurodegenerative diseases that feature abnormal buildup of proteins in Parkinson's disease, Alzheimer's disease, (ALS), frontotemporal dementia, and Lewy body dementia, among others.

"This drug, in very low doses, turns on the garbage disposal machinery inside neurons to clear toxic proteins from the cell. By clearing intracellular proteins, the drug prevents their accumulation in pathological inclusions called Lewy bodies and/or tangles, and also prevents amyloid secretion into the extracellular space between neurons, so proteins do not form toxic clumps or plaques in the brain," says the study's senior investigator, neuroscientist Charbel E-H Moussa, MB, PhD. Moussa heads the laboratory of dementia and Parkinsonism at Georgetown.

When the drug, nilotinib, is used to treat (CML), it forces into autophagy—a biological process that leads to death of tumor cells in cancer.

"The doses used to treat CML are high enough that the drug pushes cells to chew up their own internal organelles, causing self-cannibalization and cell death," Moussa says. "We reasoned that small doses—for these mice, an equivalent to one percent of the dose used in humans—would turn on just enough autophagy in neurons that the cells would clear malfunctioning proteins, and nothing else."

Moussa, who has long sought a way to force neurons to clean up their garbage, came up with the idea of using cancer drugs that push autophagy in tumors to help diseased brains. "No one has tried anything like this before," he says.

Moussa, and his two co-authors—graduate student Michaeline Hebron and Irina Lonskaya, PhD, a postdoctoral researcher in Moussa's lab—searched for that can cross the blood-brain barrier. They discovered two candidates—nilotinib and bosutinib, which is also approved to treat CML. This study discusses experiments with nilotinib, but Moussa says that use of bosutinib is also beneficial.

The mice used in this study over-express alpha-Synuclein, the protein that builds up in Lewy bodies in Parkinson's disease and dementia patients and which is found in many other neurodegenerative diseases. The animals were given one milligram of nilotinib every two days. (By contrast, the FDA approved use of up to 1,000 milligrams of nilotinib once a day for CML patients.)

"We successfully tested this for several diseases models that have an accumulation of intracellular protein," Moussa says. "It gets rid of alpha synuclein and tau in a number of movement disorders, such as Parkinson's disease as well as Lewy body dementia."

The team also showed that movement and functionality in the treated mice was greatly improved, compared with untreated mice.

In order for such a therapy to be as successful as possible in patients, the agent would need to be used early in , Moussa hypothesizes. Later use might retard further extracellular plaque formation and accumulation of in inclusions such as Lewy bodies.

Moussa is planning a phase II clinical trial in participants who have been diagnosed with disorders that feature build-up of alpha Synuclein, including Lewy body dementia, Parkinson's disease, progressive supranuclear palsy (PSP) and multiple system atrophy (MSA).

Explore further: Removing protein 'garbage' in nerve cells may help control two neurodegenerative diseases

Related Stories

Removing protein 'garbage' in nerve cells may help control two neurodegenerative diseases

December 20, 2012
Neuroscientists at Georgetown University Medical Center say they have new evidence that challenges scientific dogma involving two fatal neurodegenerative diseases—amyotrophic lateral sclerosis (ALS), and frontotemporal ...

Parkinson's disease protein gums up garbage disposal system in cells

March 28, 2013
(Medical Xpress)—Clumps of α-synuclein protein in nerve cells are hallmarks of many degenerative brain diseases, most notably Parkinson's disease.

Seeds of destruction in Parkinson's disease: Spread of diseased proteins kills neurons

October 5, 2011
New research suggests that small "seed" amounts of diseased brain proteins can be taken up by healthy neurons and propagated within them to cause neurodegeneration. The research, published by Cell Press in the October 6 issue ...

Acting out dreams linked to development of dementia, study finds

March 21, 2013
The strongest predictor of whether a man is developing dementia with Lewy bodies—the second most common form of dementia in the elderly—is whether he acts out his dreams while sleeping, Mayo Clinic researchers have discovered. ...

Scientists identify 'clean-up' snafu that kills brain cells in Parkinson's disease

March 3, 2013
Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered how the most common genetic mutations in familial Parkinson's disease damage brain cells. The study, which published online today in ...

Recommended for you

RNA thought to spread cancer shows ability to suppress breast cancer metastasis

October 22, 2018
Researchers at The University of Texas MD Anderson Cancer Center have discovered that a form of RNA called metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) appears to suppress breast cancer metastasis in mice, ...

New tool gives deeper understanding of glioblastoma

October 22, 2018
Researchers in the lab of Charles Danko at the Baker Institute for Animal Health have developed a new tool to study genetic "switches" active in glioblastoma tumors that drive growth of the cancer. In a new paper in Nature ...

Researchers find common genetic link in lung ailments

October 22, 2018
An international research team led by members of the University of Colorado School of Medicine faculty has identified a genetic connection between rheumatoid arthritis-associated interstitial lung disease and idiopathic pulmonary ...

Scientists identify critical cancer immunity genes using new genetic barcoding technology

October 20, 2018
Scientists at Mount Sinai have developed a novel technology for simultaneously analyzing the functions of hundreds of genes with resolution reaching the single cell level. The technology relies on a barcoding approach using ...

A single missing gene leads to miscarriage

October 19, 2018
A single gene from the mother plays such a crucial role in the development of the placenta that its dysfunction leads to miscarriages. Researchers from the Medical Faculty of Ruhr-Universität Bochum (RUB) have observed this ...

Making gene therapy delivery safer and more efficient

October 18, 2018
Viral vectors used to deliver gene therapies undergo spontaneous changes during manufacturing which affects their structure and function, found researchers from the Perelman School of Medicine at the University of Pennsylvania ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.