Scientists identify early predictors of disease progression which could speed Huntington's disease drug trials

May 8, 2013

Scientists have identified a set of tests that could help identify whether and how Huntington's disease (HD) is progressing in groups of people who are not yet showing symptoms. The latest findings from the TRACK-HD study, published Online First in The Lancet Neurology, could be used to assess whether potential new treatments are slowing the disease up to 10 years before the development of noticeable symptoms.

"Currently, the effectiveness of a new drug is decided by its ability to treat symptoms. These new tests could be used in future preventative drug trials in individuals who are gene positive for HD but are not yet showing overt motor symptoms. These people have the most to gain by initiating treatment early to delay the start of these overt symptoms and give them a high quality of life for a longer period of time", explains lead author Sarah Tabrizi from University College London's Institute of Neurology.

The TRACK-HD investigators have previously reported a range of tests that could be used in to assess the effectiveness of potential disease-modifying drugs in people who already show signs of the disease. But in individuals without noticeable symptoms there was little evidence of a decline in function over two years, limiting the ability to test early in the disease course.

HD is caused by the mutation of a single gene on chromosome 4, which causes a part of the DNA (known as a CAG motif) to repeat many more times than it is supposed to. The length of the CAG repeat is known to be a major determinant of the age at which symptoms of the disease are likely to start, but its contribution to progression is unclear.

Here the TRACK-HD investigators extend the study to a third year with the aim of identifying some of the earliest in individuals with presymptomatic HD, giving additional power to predict how the disease may progress beyond that already expected from age and CAG length.

Over 3 years, baseline measures derived from brain imaging were the clearest markers of disease progression and future diagnosis, above and beyond the effect of age and CAG count, in gene carriers up to 20 years before they were expected to show symptoms.

In particular, the investigators suggest that measuring volume change in white matter and the caudate and putamen regions might be future endpoints for treatment trials.

In individuals up to 10 years away from developing symptoms, there was also significant deterioration in performance on a number of motor (movement) and cognitive (intellectual function) tasks compared with controls, and the frequency of apathy increased. Finger tapping was the most sensitive of the motor assessments, while the symbol digit modality test proved to be the most sensitive of the cognitive measures.

According to Tabrizi, "A new generation of drugs will be ready for human trials in the very near future. Diagnosis in HD is something of an artificial construct at onset of motor symptoms, and this study now gives us a number of other, more well-defined parameters that correlate with disease progression. Something that suggests we're moving towards a more biological, as opposed to physical, definition of that reduces the importance of an 'onset event' is great news. By extending the reach of clinical trials to include individuals who are currently free of overt there is a realistic future possibility that treatments in the pipeline can significantly improve the for patients and families."

Writing in a linked Comment, Francis Walker from Wake Forest Medical School in the USA says that the TRACK- have set the standard for observational studies in other neurodegenerative diseases, adding that, "Virtual roadmaps of disease in the minds of practitioners6 are good for care in the framework of the traditional patient encounter, but it takes substantial effort, teamwork, and genius to turn them into rigorous, quantifiable timelines that can be used to test efficacy in future therapeutic trials."

Explore further: Striatal brain volume predicts Huntington disease onset

More information: www.thelancet.com/journals/lan … (13)70088-7/abstract
Commentary: www.thelancet.com/journals/lan … (13)70088-7/abstract

Related Stories

Striatal brain volume predicts Huntington disease onset

April 26, 2012
Huntington disease (HD) is an inherited neurodegenerative disorder caused by a defect on chromosome four where, within the Huntingtin gene, a CAG repeat occurs too many times. Most individuals begin experiencing symptoms ...

Immune cell migration is impeded in Huntington's disease

November 19, 2012
Huntington disease (HD) is an incurable neurodegenerative disease caused by a mutation in the huntingtin gene (htt). Though most of the symptoms of HD are neurological, the mutant HTT protein is expressed in non-neural cells ...

Toxic protein build-up in blood shines light on Huntington's disease

September 17, 2012
A new light-based technique for measuring levels of the toxic protein that causes Huntington's disease (HD) has been used to demonstrate that the protein builds up gradually in blood cells. Published today in the Journal ...

Enzyme inhibition protects against Huntington's disease damage in two animal models

November 29, 2012
Treatment with a novel agent that inhibits the activity of SIRT2, an enzyme that regulates many important cellular functions, reduced neurological damage, slowed the loss of motor function and extended survival in two animal ...

Reach2HD, a Phase II study in Huntington's disease, launched

June 7, 2012
The Huntington Study Group (HSG), under the leadership of Ray Dorsey, M.D. with Johns Hopkins Medical and Diana Rosas, M.D. with Massachusetts General Hospital, is conducting a clinical trial in Huntington's disease (HD) ...

Recommended for you

Activating brain region creates intense desire to use cocaine

August 22, 2017
Researchers have identified a portion of the brain that intensifies one's desire for certain rewards—in this case, mimicking addiction to cocaine.

Chronic stress induces fatal organ dysfunctions via a new neural circuit

August 22, 2017
Hokkaido University researchers revealed that fatal gut failure in a multiple sclerosis (MS) mouse model under chronic stress is caused by a newly discovered nerve pathway. The findings could provide a new therapeutic strategy ...

Brain region mediates pleasure of eating

August 22, 2017
Providing the body with food is essential for survival. But even when full, we can still take pleasure in eating. Researchers at the Max Planck Institute of Neurobiology in Martinsried and the Friedrich Miescher Institute ...

Contact in sports may lead to differences in the brains of young, healthy athletes

August 22, 2017
People who play contact sports show changes to their brain structure and function, with sports that have greater risk of body contact showing greater effects on the brain, a new study has found.

Research reveals 'exquisite selectivity' of neuronal wiring in the cerebral cortex

August 21, 2017
The brain's astonishing anatomical complexity has been appreciated for over 100 years, when pioneers first trained microscopes on the profusion of branching structures that connect individual neurons. Even in the tiniest ...

Afternoon slump in reward response

August 21, 2017
Activation of a reward-processing brain region peaks in the morning and evening and dips at 2 p.m., finds a study of healthy young men published in The Journal of Neuroscience. This finding may parallel the drop in alertness ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.