SUMO wrestling cells reveal new protective mechanism target for stroke

May 17, 2013

Scientists investigating the interaction of a group of proteins in the brain responsible for protecting nerve cells from damage have identified a new target that could increase cell survival.

The discovery, made by researchers from the University's School of Biochemistry and published in the EMBO journal with additional comment in Nature Reviews, could eventually lead to new therapies for stroke and other .

The research builds on earlier work by the team which identified a protein, known as SUMO, responsible for controlling the chemical processes which reduce or enhance protection mechanisms for nerve cells in the brain. The team's latest work has now identified the key role that SUMO plays in promoting .

During cell stress a protein response triggers a protective mechanism that allows cell adaptation and survival. This process, known as SUMOylation, involves the attachment of a small protein called Small Ubiquitin-related Modifier (SUMO) to . This pathway is essential for survival of all plant and animal cells because it regulates how proteins interact with each other and can protect nerve cells against damage.

The findings have shown that SUMOylation of a protein called dynamin-related protein 1 (Drp1) is particularly important because it controls the release of from mitochondria that instruct the cell to die in a process called apoptosis.

SUMOylation of Drp1 reduces mitochondrial release of these 'death' signals and helps survive toxic insults associated with stroke. In the future, finding effective methods to enhance SUMOylation of Drp1 may also be beneficial for cell survival in other diseases including heart attacks and Alzheimer's disease.

The European Research Council-funded study, entitled 'SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia' published in the EMBO Journal and led by Professor Jeremy Henley from the University's School of Biochemistry.

Explore further: Neuroscientists discover key protein responsible for controlling nerve cell protection

More information: doi:10.1038/emboj.2013.65

Related Stories

Neuroscientists discover key protein responsible for controlling nerve cell protection

April 22, 2012
A key protein, which may be activated to protect nerve cells from damage during heart failure or epileptic seizure, has been found to regulate the transfer of information between nerve cells in the brain. The discovery, made ...

SUMO defeats protein aggregates that typify Parkinson's disease

July 11, 2011
A small protein called SUMO might prevent the protein aggregations that typify Parkinson's disease (PD), according to a new study in the July 11, 2011, issue of The Journal of Cell Biology.

SUMO-snipping protein plays crucial role in T and B cell development

January 27, 2012
When SUMO grips STAT5, a protein that activates genes, it blocks the healthy embryonic development of immune B cells and T cells unless its nemesis breaks the hold, a research team led by scientists at The University of Texas ...

Researchers reveal mechanism to halt cancer cell growth, discover potential therapy

February 4, 2013
University of Pittsburgh Cancer Institute (UPCI) researchers have uncovered a technique to halt the growth of cancer cells, a discovery that led them to a potential new anti-cancer therapy.

Researchers discover a missing link in signals contributing to neurodegeneration

May 9, 2013
In many neurodegenerative diseases the neurons of the brain are over-stimulated and this leads to their destruction. After many failed attempts and much scepticism this process was finally shown last year to be a possible ...

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.