Blocking overactive receptor in Alzheimer's recovers memory loss and more

June 17, 2013, McGill University

A new study shows that memory pathology in older mice with Alzheimer's disease can be reversed with treatment. The study by researchers from the Montreal Neurological Institute and Hospital - The Neuro, at McGill University and at Université de Montréal found that blocking the activity of a specific receptor in the brain of mice with advanced Alzheimer's disease (AD) recovers memory and cerebrovascular function. The results, published in the Journal of Neuroinflammation in May, also suggest an underlying mechanism of AD as a potential target for new therapies.

"The exciting and important aspect of this study is that even animals with advanced pathology can be rescued with this molecule" says Dr. Edith Hamel, neuroscientist at The Neuro and lead investigator on the paper in collaboration with Dr Réjean Couture at the Department of Physiology at Université de Montréal. "We have rarely seen this type of reversal of AD symptoms before in our mouse model at this advanced age – when mice have been developing AD for one year."

The researchers found an increased level of a receptor known as bradykinin B1 receptor (B1R) in the brain of mice with AD, a receptor involved in inflammation. "By administering a molecule that selectively blocks the action of this receptor, we observed important improvements in both cognitive and cerebrovascular function," says Dr. Baptiste Lacoste, research fellow who conducted the study at The Neuro and now pursuing his training at Harvard Medical School in Boston. "Alzheimer's disease destroys and also compromises the function of blood vessels in the brain. Not only were there improvements in , but also marked recovery in and vascular reactivity, i.e. the ability of cerebral vessels to dilate or constrict when necessary." Proper functioning of blood vessels in the brain is vital to providing nutrients and oxygen to nerve cells, and represent important risk factors for developing AD at an advanced age.

"Another interesting result that has not been seen before in our is a reduction by over 50% of toxic amyloid-beta peptide," adds Dr. Hamel. "In Alzheimer's disease, protein fragments called amyloid-beta have a deleterious effect on the blood and nervous systems. Normally, these protein fragments are broken down and removed. In Alzheimer's disease, the protein fragments clump together—a factor believed to contribute to neuronal and vascular dysfunction. We are not sure if these decreases contribute to the functional recovery, but we hope that our findings will aid in clarifying this issue and identifying new targets for therapeutic approaches."

The results show that an increase in B1R is associated with amyloid-beta plaques in Alzheimer's disease mice with impaired memory, and that chronic blockade of B1R significantly improves learning, memory, cerebrovascular function, and several other pathological AD hallmarks in mice with a fully developed pathology. Together, these findings confirm a role of B1R in AD pathogenesis and the role of neuroinflammation as an underlying mechanism in AD. The next step would be to further investigate potential blockers of the B1R as a potential treatment for AD in humans.

Explore further: Drugs targeting blood vessels may be candidates for treating Alzheimer's

More information: www.jneuroinflammation.com/con … ent/10/1/57/abstract

Related Stories

Drugs targeting blood vessels may be candidates for treating Alzheimer's

March 7, 2013
(Medical Xpress)—University of British Columbia researchers have successfully normalized the production of blood vessels in the brain of mice with Alzheimer's disease (AD) by immunizing them with amyloid beta, a protein ...

Understanding the molecular mechanisms underlying Alzheimer's disease

June 10, 2013
The accumulation of amyloid-β (Aβ) in the brains of Alzheimer's disease (AD) patients is known to be associated with memory loss and neuronal degeneration, but the mechanism of Aβ pathogenesis is not fully understood.

Cholesterol drug shows benefit in animal study of Alzheimer's disease

April 3, 2012
A cholesterol drug commonly prescribed to reduce cardiovascular disease risk restores blood vessel function in a mouse model of Alzheimer's disease, according to a study in the April 4 issue of The Journal of Neuroscience. ...

Scientists identify Buphenyl as a possible drug for Alzheimer's disease

March 11, 2013
(Medical Xpress)—Buphenyl, an FDA-approved medication for hyperammonemia, may protect memory and prevent the progression of Alzheimer's disease. Hyperammonemia is a life-threatening condition that can affect patients at ...

Alzheimer's disease is associated with removal of the synaptic protein ADAM10

May 8, 2013
Alzheimer's disease is characterized by the accumulation of neurotoxic β-amyloid peptide (A-beta). ADAM10, a protein that resides in the neural synapses, has previously been shown to prevent the formation of A-beta.

Alzheimer's researcher reveals a protein's dual destructiveness—and therapeutic potential

December 3, 2012
A scientist at the University of British Columbia and Vancouver Coastal Health has identified the molecule that controls a scissor-like protein responsible for the production of plaques – the telltale sign of Alzheimer's ...

Recommended for you

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Anxiety: An early indicator of Alzheimer's disease?

January 12, 2018
A new study suggests an association between elevated amyloid beta levels and the worsening of anxiety symptoms. The findings support the hypothesis that neuropsychiatric symptoms could represent the early manifestation of ...

One of the most promising drugs for Alzheimer's disease fails in clinical trials

January 11, 2018
To the roughly 400 clinical trials that have tested some experimental treatment for Alzheimer's disease and come up short, we can now add three more.

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018
Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread ...

Molecular mechanism behind HIV-associated dementia revealed

January 5, 2018
For the first time, scientists have identified and inhibited a molecular process that can lead to neurodegeneration in patients with HIV, according to a Northwestern Medicine study published in Nature Communications.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.