Key protein is linked to circadian clocks, helps regulate metabolism

June 18, 2013, Gladstone Institutes

Inside each of us is our own internal timing device. It drives everything from sleep cycles to metabolism, but the inner-workings of this so-called "circadian clock" are complex, and the molecular processes behind it have long eluded scientists. But now, researchers at the Gladstone Institutes have discovered how one important protein falls under direct instructions from the body's circadian clock. Furthermore, they uncover how this protein regulates fundamental circadian processes—and how disrupting its normal function can throw this critical system out of sync.

In the latest issue of the Journal of Neuroscience, Gladstone Investigator Katerina Akassoglou, PhD, and her team reveal in animal models how the production of the p75 neurotrophin receptor (p75NTR) protein oscillates in time with the body's natural —and how these rhythmic oscillations help regulate vital metabolic functions. This discovery underscores the widespread importance of p75NTR by offering insight into how the circadian clock helps maintain the body's overall metabolic health.

Virtually every organism on the planet—from bacteria to humans—has a circadian clock, a biological timing mechanism that oscillates with a period of about 24 hours and is coordinated with the cycle of day and night. And while it runs independent of , it is influenced by the rhythms of light, temperature and . Intriguingly, recent studies have also found a link between circadian clocks and metabolism.

"Important are also heavily influenced by circadian clocks, which is why activities such as chronic night-shift work—which can cause a misalignment of this clock—increase one's risk for metabolic and such as obesity, , cancer and multiple sclerosis," said Dr. Akassoglou. Dr. Akassoglou is also a professor of neurology at the University of California, San Francisco, (UCSF) with which Gladstone is affiliated. "In this study, we pinpointed p75NTR as an important molecular 'link' between circadian clocks and metabolic health."

Originally, p75NTR was only thought to be active in the nervous system. Later studies found it to be active in many cell types throughout the body, suggesting that it impacts a variety of biological functions. Last year, Gladstone researchers discovered that p75NTR was present in the liver and in fat cells, and that it regulates glucose levels in the blood—an important metabolic process. Since these findings uncovered a link between p75NTR and metabolism, the research team tested—first in a petri dish and then in animal models—whether there was also a link between p75NTR and the circadian clock.

The team focused on two genes called Clock and Bmal1. These so-called "circadian regulator genes," and others like them, are found throughout the body. Their activity controls the body's circadian clock. The researchers wanted to see if there was a connection between these circadian genes and p75NTR.

"Our initial experiments revealed such a connection," recalls Gladstone Postdoctoral Fellow Bernat Baeza-Raja, PhD, the paper's lead author. "In individual cells, we saw that p75NTR production was controlled by Clock and Bmal1, which bind directly to the gene that codes for the p75NTR and start production of the protein."

But perhaps even more important than how p75NTR was produced was when. The team found that p75NTR production, like the circadian clock genes themselves, oscillated in a 24-hour cycle—in sync with the cells' natural circadian rhythm. Experiments in mouse models further supported these findings.

And when the team genetically modified a group of mice so that it lacked the circadian Clock gene, everything else fell out of sync. The circadian oscillation of p75NTR production was disrupted, and p75NTR levels dropped.

However, what was most fascinating, say the researchers, was how a drop in p75NTR levels then affected a variety of circadian clock systems. Specifically, the regular oscillations of other circadian genes in the brain and the liver became disrupted, as well as genes known to regulate glucose and lipid metabolism.

"The finding that a loss of p75NTR affected circadian and metabolic systems is strong evidence that this protein is intricately tied to both," said Life Sciences Institute Director Alan Saltiel, PhD, who is also a professor at the University of Michigan and was not involved in the study. "It will be fascinating to see what additional insight Dr. Akassoglou and her team will uncover as they continue to examine the role of p75NTR in circadian clocks and metabolic function."

"While these findings reveal p75NTR to be an important link between circadian clocks and metabolism, the system is complex, and there are likely other factors at play," said Dr. Akassoglou. "We are currently working to identify the relationship between the circadian clock, metabolism and the immune system, so that one day we could develop therapies to treat diseases influenced by circadian clock disruption—including not only obesity and diabetes, but also potentially multiple sclerosis and even Alzheimer's disease."

Explore further: Scientists identify key mechanism involved in Type 2 diabetes

Related Stories

Scientists identify key mechanism involved in Type 2 diabetes

March 28, 2012
Scientists at the Gladstone Institutes have discovered a key protein that regulates insulin resistance—the diminished ability of cells to respond to the action of insulin and which sets the stage for the development ...

Circadian rhythms control body's response to intestinal infections

May 31, 2013
(Medical Xpress)—Circadian rhythms can boost the body's ability to fight intestinal bacterial infections, UC Irvine researchers have found.

Cancers don't sleep: The Myc oncogene can disrupt circadian rhythm

April 9, 2013
The Myc oncogene can disrupt the 24-hour internal rhythm in cancer cells. Postdoctoral fellow Brian Altman, PhD, and graduate student Annie Hsieh, MD, both from the in the lab of Chi Van Dang, MD, PhD, director of the Abramson ...

Investigational drug improves sleep disorder among the blind

June 17, 2013
An investigational new drug significantly improved a common and debilitating circadian rhythm sleep disorder that frequently affects people who are completely blind, a multicenter study finds. The results were presented Monday ...

Researchers identify new circadian clock component

May 16, 2013
Northwestern University scientists have shown a gene involved in neurodegenerative disease also plays a critical role in the proper function of the circadian clock.

Recommended for you

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.