Protein linked with tumor growth could be potential target for cancer-fighting drugs

June 6, 2013

As tumors grow, their centers are squeezed of oxygen. And so tumors must flip specific genetic switches to survive in these hypoxic environments. A series of studies funded to do only basic science and published today in the journal Cell reports the serendipitous discovery of a druggable target necessary for the survival of tumors in these low-oxygen environments.

"This is a clear example of starting with a basic biology question that now turns out to be relevant to patients," says Joaquin Espinosa, PhD, investigator at the University of Colorado Cancer Center, associate professor in the Department of Molecular, Cellular and at CU Boulder, and the paper's senior author.

Espinosa along with postdoctoral researcher Matthew Galbraith, PhD, won a National Science Foundation grant to study how is controlled by a protein complex called Mediator.

"This is an ancient protein complex – conserved in all eukaryotes from yeast to humans," Espinosa says. "But the mechanism of action of Mediator is not well understood."

The purpose of the grant began and ended with increased understanding. Specifically, Espinosa, Galbraith and colleagues focused on an enzyme in Mediator known as CDK8: what is the function of this enzyme? They depleted CDK8 in and then grew the cells with and without stressors like low glucose, and, of course, low oxygen. Without CDK8, cells in failed to activate the gene expression program that could help them survive hypoxic conditions.

"Low and behold, it turns out CDK8 has a major role in controlling gene expression in conditions of low oxygen. A few hundred genes go up to allow the cell to adapt to these conditions, but not without CDK8," Espinosa says.

In itself, this is a fairly major finding in basic biology. But it was Espinosa's connection with the cancer research community that allowed the next step:

"See, we've known that the transcription factor HIF1A is a master regulator of a cell's response to hypoxia. It turns survival genes up when oxygen goes down," Espinosa says. "HIF1A has been known as a major factor in tumor development, but as a transcription factor it's notoriously hard to drug."

The group wondered if CDK8 and HIF1A might work together to regulate genetic response to hypoxic conditions. By now you see where this is going: it turns out that HIF1A necessarily works through CDK8 to help tumors respond to the hypoxic environment. And while it's difficult to drug the transcription factor HIF1A, the class of drugs known as kinase inhibitors are designed to specifically target enzymes similar in function to CDK8.

"From the start, it was a very mechanistic question: how do cells use the Mediator complexes to turn genes on and off? Now we find this same system is important for tumor hypoxia. We entered from the CDK8 angle, landed right on the known oncogene HIF1A, and are back to CDK8, now with very real clinical potential," Espinosa says.

Explore further: Study details genes that control whether tumors adapt or die when faced with p53 activating drugs

Related Stories

Study details genes that control whether tumors adapt or die when faced with p53 activating drugs

May 22, 2013
When turned on, the gene p53 turns off cancer. However, when existing drugs boost p53, only a few tumors die – the rest resist the challenge. A study published in the journal Cell Reports shows how: tumors that live even ...

A new approach to improving cancer chemotherapy

August 7, 2012
(Medical Xpress) -- Chemotherapy kills tumor cells, but it also wreaks havoc on the rest of the body. A team of researchers led by Igor Roninson of the South Carolina College of Pharmacy just reported the discovery of a new ...

Study pinpoints epigenetic function of common cancer-causing protein—it's not what science thought

September 26, 2012
(Medical Xpress)—Squamous cell carcinoma (SCC) is diagnosed in about 700,000 people in the United States every year. Commonly contributing to SCC is a protein called DNp63a – it goes abnormally high and the ability of ...

New ruthenium complexes target cancer cells without typical side effects

May 28, 2013
A team of UT Arlington researchers has identified two ruthenium-based complexes they believe could pave the way for treatments that control cancer cell growth more effectively and are less toxic for patients than current ...

Lack of oxygen in cancer cells leads to growth and metastasis

September 13, 2012
(Medical Xpress)—It seems as if a tumor deprived of oxygen would shrink. However, numerous studies have shown that tumor hypoxia, in which portions of the tumor have significantly low oxygen concentrations, is in fact linked ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.