Study unveils insight into a debilitating brain disease

June 6, 2013 by James Hataway, University of Georgia

From the neurons that enable thought to the keratinocytes that make toenails grow–a complex canopy of sugar molecules, commonly known as glycans, envelop every living cell in the human body.

These complex carbohydrate chains perform a host of vital functions, providing the necessary machinery for cells to communicate, replicate and survive. It stands to reason, then, that when something goes wrong with a person's glycans, something goes wrong with them.

Now, researchers at the University of Georgia are learning how changes in normal glycan behavior are related to a rare but fatal lysosomal disease known as Niemann-Pick type C (NPC), a that prevents the body from metabolizing cholesterol properly. The findings were published recently in the PNAS Early Edition.

"We are learning that the problems associated with cholesterol trafficking in the cell lead to problems with glycans on the cell's surface, and that causes a multitude of negative effects," said Geert-Jan Boons, professor of chemistry in the Franklin College of Arts and Sciences and researcher at UGA's Research Center. "Now, for the first time, we can see what these problems are, which we hope will lead to a new understanding of diseases like NPC."

Because NPC patients are unable to metabolize cholesterol, the waxy substance begins to accumulate in the brain. This can lead to a host of serious problems, including neurodegeneration, which the researchers hypothesize may be caused by improper recycling of glycans on the surface of an NPC patient's cells.

Glycans normally undergo a kind of when they enter the cell only to be returned to the surface recharged and ready to work. The researchers discovered that glycans in NPC cells do not do this.

"One of the secondary effects of NPC is the disruption of traffic pathways within the cell, and this can lead to altered recycling of glycans," said Richard Steet, associate professor of biochemistry and molecular biology and CCRC researcher. "The glycans come into the cell, but they won't recycle back up to the cell's surface where they must exist to function as receptors or ion channels."

"Basically, the machinery gets clogged up," Boons said.

Like downed phone lines and flooded roads in a thunderstorm, glycans get stuck inside the cell making communication and travel for these cells difficult or impossible. Without these basic abilities, the body's motor, sensory and cognitive functions begin to suffer. This might explain why NPC patients suffer from such a wide variety of neurological and psychiatric disorders, such as uncoordinated limb movements, slurred speech, epilepsy, paralysis, psychosis, dementia and hallucinations.

The researchers made these observations in fibroblasts taken from diseased patients. These cells are most commonly found in connective tissues, and they play a vital role in wound healing. However, they hope to continue their investigation into the effects of NPC by studying glycan behavior in neural cells, which make up the human brain.

While they caution that much more work must be done, they hope that an improved understanding of the roles that glycans play in neural will lead to new therapeutics for NPC and other diseases like it.

"It is exciting to work on projects like these, because we believe glycobiology is the next frontier, the next level of complexity," Boons said. "The time is right for new discovery."

Explore further: Protective bacteria in the infant gut have resourceful way of helping babies break down breast milk

Related Stories

Protective bacteria in the infant gut have resourceful way of helping babies break down breast milk

August 13, 2012
A research team at the University of California, Davis, has found that important and resourceful bacteria in the baby microbiome can ferret out nourishment from a previously unknown source, possibly helping at-risk infants ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

VendicarE
2.3 / 5 (3) Jun 06, 2013
Can this lead to a cure for Libertarianism, and Randism?

Those diseases are the scourge of mankind.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.