Amyloid formation: Designer proteins light the way forward

July 17, 2013
Amyloid formation: Designer proteins light the way forward
Electron microscopy images reveal that amyloids formed by the designed peptide LD6 (top left) have a similar structure to naturally occurring amyloids in diabetes type 2 (top right), Alzheimer’s disease (bottom left) and thyroid cancer (bottom right). Credit: A. Lakshmanan et al.

Insight into the mechanism of protein aggregation provides a model system that could lead to treatments for several associated diseases

The assembly of abnormal proteins into aggregates called amyloids is a characteristic of several diseases, including Alzheimer's, Parkinson's, and . Exactly how amyloids form is unknown, but work performed at A*STAR has shown that the mechanism can be accurately recreated with specifically designed .

The research team included Charlotte Hauser and Anupama Lakshmanan at the A*STAR Institute of Bioengineering and Nanotechnology (IBN), Daniel Cheong at the A*STAR Institute of High Performance Computing and international collaborators.

The study was based on previous work in which the IBN team designed peptides, or short protein fragments, that self-assemble in water to produce amyloids. In their recent study, the researchers used experimental techniques and computer modeling to compare the structural properties of aggregates formed by two of these peptides—LIVAGD (LD6) and IVD (ID3)—with those of peptide fragments from naturally occurring (see image).

"We found that our rationally designed peptides exhibit a similar self-assembly mechanism to several amyloid-forming implicated in disease," says Hauser. "This provides a fresh perspective on the process of amyloid formation."

The team also aimed to clarify the role of the amino acid phenylalanine, which is often found within regions of proteins that are important for amyloid formation. Consequently, scientists thought that phenylalanine played a crucial role in the mechanism. The team's findings, however, challenge this idea: the peptides that the researchers designed contained no phenylalanine or similar amino acids, yet still formed amyloids.

Analysis of another naturally occurring peptide, KLVFFAE (KE7), reinforced this finding. KE7 is a fragment of amyloid-?, a protein involved in Alzheimer's disease. Scientists believed that two adjacent phenylalanines in its structure were crucial for amyloid formation, but Hauser and co-workers discovered that KE7 forms aggregates in a different way to the amyloid-forming peptides.

"This suggests that phenylalanine is not as essential for amyloid formation as previously postulated," explains Hauser. "It shows that there might be other core sequences that are more important."

Hauser notes that the new study forms the basis for tackling amyloid fibril formation in disease. "The fundamental mechanism of amyloid formation is believed to be common across all amyloid-related diseases, so drugs could be developed to effectively treat multiple diseases," she explains. Insufficient knowledge of protein self-assembly has hampered the search for a way to prevent or cure amyloid formation. "Our findings put forth a simplified model to study this hallmark of several degenerative disorders and design therapeutics for its control and prevention."

Explore further: Understanding abnormal proteins in degenerative diseases

More information: Proceedings of the National Academy of Sciences USA 110, 519–524 (2013). www.pnas.org/content/110/2/519.abstract

Related Stories

Understanding abnormal proteins in degenerative diseases

April 22, 2013
Amyloids, or fibrous aggregates of abnormally folded proteins, are a common feature in degenerative diseases such as Alzheimer's, diabetes and cancer. Amyloids occur naturally in the body, but despite decades of research, ...

Fighting Alzheimer's disease with protein origami

July 12, 2013
Alzheimer's disease is a progressive degenerative brain disease most commonly characterized by memory deficits. Loss of memory function, in particular, is known to be caused by neuronal damage arising from the misfolding ...

New Alzheimer's research suggests possible cause: The interaction of proteins in the brain

June 19, 2013
For years, Alzheimer's researchers have focused on two proteins that accumulate in the brains of people with Alzheimer's and may contribute to the disease: plaques made up of the protein amyloid-beta, and tangles of another ...

Recommended for you

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

Strain of intestinal bacteria can stop high-salt diet from inducing inflammatory response linked to hypertension

November 15, 2017
Microbes living in your gut may help protect against the effects of a high-salt diet, according to a new study from MIT.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.