Interspecies transplant works in first step for new diabetes therapy

July 12, 2013 by Marla Paul, Northwestern University

(Medical Xpress)—In the first step toward animal-to-human transplants of insulin-producing cells for people with type 1 diabetes, Northwestern Medicine scientists have successfully transplanted islets, the cells that produce insulin, from one species to another. And the islets survived without immunosuppressive drugs.

Northwestern scientists developed a new method that prevented rejection of the islets, a huge problem in transplants between species, called xenotransplantation.

"This is the first time that an transplant of has been achieved for an indefinite period of time without the use of ," said study co-senior author Stephen Miller. "It's a big step forward."

"Our ultimate goal is to be able to transplant pig islets into humans, but we have to take baby steps," said Xunrong Luo, M.D., also co-senior author of the study that will be published online July 12 in the journal Diabetes. "Pig islets produce insulin that controls blood sugar in humans."

Luo is an associate professor of nephrology at Northwestern University Feinberg School of Medicine and medical director of the Human Islet Cell Transplantation Program at Northwestern Memorial Hospital. Miller is the Judy Gugenheim Research Professor of Microbiology-Immunology at Feinberg.

For people with hard-to-control , a transplant of insulin-producing islets from a deceased donor is one important way to control their chronic disease, in which their bodies do not produce insulin. However, there is a severe shortage of islet from deceased donors. Many patients on waiting lists don't receive the transplant or suffer damage to their heart, nerves, eyes and kidneys while they wait.

Using islets from another species would provide wider access to transplants for humans and solve the problem. But concerns about controlling rejection of transplants from a different species have made that approach seem insurmountable until now.

In the new study, scientists persuaded the immune systems of mice to recognize rat islets as their own and not reject them. Notably, the method did not require the long-term use of drugs to suppress the immune system, which have serious side effects. The islets lived and produced insulin in the mice for at least 300 days, which is as long as scientists followed the mice.

While the barrier from rats to mice is probably lower than from pigs to humans, the study showed interspecies islet transplants are possible and without immunosuppressive drugs, Luo said.

In the study, the rat splenocytes, a type of white blood cell located in the spleen, were removed and treated with a chemical that caused their deaths. Next, the dead splenocytes were injected into the mice. The cells entered the spleen and liver and were mopped up by scavenger cells. The scavengers processed the splenocytes and presented fragments of them on their cell surface, triggering a reaction that told the T cells to accept the subsequently transplanted rat islets and not attack them.

But rejection was still a threat. A unique challenge of an interspecies transplant is controlling the B cells, immune cells that are major producers of antibodies. Initially, when scientists transplanted the rat islets into the mice, the mouse immune system started producing antibodies against the rat cells causing rejection.

To solve the problem, Luo realized she needed to kill off the B-cells at the same time she injected the donor islets into the mice. Thus, she gave the mice B-cell depleting antibodies—already used in a clinical setting in human transplants. When the B-cells naturally returned after the transplant, they no longer attacked the rat islets.

"With this method, 100 percent of the survived indefinitely," Luo said. "Now we're trying to figure out why the B-cells are different when they come back."

Explore further: Engineered pancreatic tissues could lead to better transplants for diabetics

Related Stories

Engineered pancreatic tissues could lead to better transplants for diabetics

August 15, 2012
Technion researchers have built pancreatic tissue with insulin-secreting cells, surrounded by a three-dimensional network of blood vessels. The engineered tissue could pave the way for improved tissue transplants to treat ...

Pig to primate transplants show promise for diabetes

November 9, 2011
(Medical Xpress) -- Scientists exploring a potential cure for diabetes have shown that transplanting insulin-producing cells from embryonic pigs into diabetic monkeys can dramatically lower blood sugar levels, though not ...

Improving life for those who suffer most from type 1 diabetes

June 20, 2012
A transplant procedure given only to those with Type 1 diabetes who pass out repeatedly from low blood sugar levels, or ‘hypos’, is likely to become much more effective as a result of a discovery made by a group ...

Recommended for you

Women who have gestational diabetes in pregnancy are at higher risk of future health issues

January 16, 2018
Women who have gestational diabetes mellitus (GDM) during pregnancy have a higher than usual risk of developing type 2 diabetes, hypertension, and ischemic heart disease in the future, according to new research led by the ...

Diabetes gene found that causes low and high blood sugar levels in the same family

January 15, 2018
A study of families with rare blood sugar conditions has revealed a new gene thought to be critical in the regulation of insulin, the key hormone in diabetes.

Discovery could lead to new therapies for diabetics

January 12, 2018
New research by MDI Biological Laboratory scientist Sandra Rieger, Ph.D., and her team has demonstrated that an enzyme she had previously identified as playing a role in peripheral neuropathy induced by cancer chemotherapy ...

Enzyme shown to regulate inflammation and metabolism in fat tissue

January 11, 2018
The human body has two primary kinds of fat—white fat, which stores excess calories and is associated with obesity, and brown fat, which burns calories in order to produce heat and has garnered interest as a potential means ...

Big strides made in diabetes care

January 5, 2018
(HealthDay)—This past year was a busy, productive one for diabetes research and care.

Gene therapy restores normal blood glucose levels in mice with type 1 diabetes

January 4, 2018
Type 1 diabetes is a chronic disease in which the immune system attacks and destroys insulin-producing beta cells in the pancreas, resulting in high blood levels of glucose. A study published January 4th in Cell Stem Cell ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

TheGhostofOtto1923
1 / 5 (3) Jul 12, 2013
Does this mean the price of pork is going up? I hope not.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.