Study offers promising new direction for organ regeneration and tissue repair

July 31, 2013

Because most human tissues do not regenerate spontaneously, advances in tissue repair and organ regeneration could benefit many patients with a wide variety of medical conditions.

Now a research team led by investigators at Beth Israel Deaconess Medical Center (BIDMC) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center has identified an entirely new approach to enhance normal growth, a finding that could have widespread therapeutic applications.

Their findings were published on-line this week in the Proceedings of the National Academy of Sciences (PNAS).

Tissue regeneration is a process that is not fully understood, but previous research has demonstrated that endothelial cells lining the insides of small blood vessels play a key role in tissue growth. It is also known that these generate called epoxyeicosatrienoic acids (EETs), which stimulate in response to tissue injury.

In this new research, first author Dipak Panigrahy, MD, an investigator in BIDMC's Center for Vascular Biology Research, and his colleagues wanted to find out how EETs might participate in organ and . To answer this question, they created seven different mouse models. The models focused on liver, kidney and lung regeneration; wound healing; corneal vascularization; and retinal vascularization.

"We used genetic and pharmacologic tools to manipulate EET levels in the animals to show that EETs play a critical role in accelerating tissue growth, providing the first in vivo demonstration that pharmacological modulation of EETs can affect organ regeneration," explains Panigrahy, an Instructor in Pathology at Harvard Medical School. Administering synthetic EETs spurred tissue growth in the research models; conversely, lowering EET levels – by either manipulating genes or administering drugs – delayed tissue regeneration.

The team also demonstrated that proteins called soluble epoxide hydrolase (sEH) inhibitors, known to elevate EET levels, promoted liver and lung regeneration. (sEH is the main metabolizing enzyme of EETs.)

"Our results offer a mechanistic rationale for evaluating sEH inhibitors as novel therapeutics for a number of human diseases such as hepatic insufficiency after liver damage and diseases characterized by immature lung development, such as bronchopulmonary dysplasia," says Panigrahy, adding that the use of topical sEH inhibitors on the skin might also be useful for the acceleration of wound healing.

The researchers suspected that EETs were stimulating tissue regeneration by way of blood vessel formation, specifically by producing vascular endothelial growth factor (VEGF) to promote vessel growth. As predicted, when the investigators depleted VEGF in the mice, EETs' effects on organ regeneration disappeared.

"Discovering EETs' role could be of critical importance to help control the repair of liver, lungs and kidneys," says senior author Mark Kieran, MD, PhD, of the Division of Pediatric Oncology at Dana-Farber/Boston Children's Cancer and Blood Disorders Center. "Since diseases of these organs are a major cause of morbidity and mortality in the North American population, the opportunity to modulate the regeneration of healthy tissue could have significant therapeutic implications for many patients." These findings may also apply to conditions or physical defects that lead to the loss of specialized cells in other organ systems, such as the nervous system and the immune system.

The investigators stress that it will be important to determine whether EETs affect other factors, besides VEGF, in influencing tissue repair. Additionally, they add, the beneficial effects of EETs will have to be carefully weighed against their finding that direct administration of EETs can stimulate cancer growth in animal models. Several clinical trials that are currently testing the potential of sEH inhibitors for purposes other than or wound repair could offer valuable insights into the safety of elevating EET levels in patients.

"Although our work suggests synthetic EETs would promote wound healing after surgery, more clinical trials are needed to assess the potential benefits and possible risks of these novel lipids," adds co-corresponding author Darryl Zeldin, MD, Scientific Director for the National Institute of Environmental Health Sciences, part of the National Institutes of Health.

In addition to laying the groundwork for future research, the investigators point out that this study highlights the benefits of experts from varying disciplines and organizations working together, noting that coauthors work in departments ranging from oncology to ophthalmology and from pharmacotherapy to transplantation. They included investigators from Boston Children's Hospital; the Institute for Systems Biology; the University of California, Davis; the National Institute of Environmental Health Science at the National Institutes of Health; the University of North Carolina at Chapel Hill; the Lahey Clinic Medical Center; the University of Texas Southwestern Medical Center; the Fred Hutchinson Cancer Research Center; and Schepens Eye Research Institute/Massachusetts Eye and Ear.

Explore further: Targeting EETs to treat cardiovascular disease may prove a double-edged sword

More information: Epoxyeicosanoids promote organ and tissue regeneration , www.pnas.org/cgi/doi/10.1073/pnas.1311565110

Related Stories

Targeting EETs to treat cardiovascular disease may prove a double-edged sword

December 19, 2011
A group of small molecules called EETs – currently under scrutiny as possible treatment targets for a host of cardiovascular diseases – may also drive the growth and spread of cancer, according to researchers at ...

Fatty acid metabolite shows promise against cancer in mice

April 2, 2013
A team of UC Davis scientists has found that a product resulting from a metabolized omega-3 fatty acid helps combat cancer by cutting off the supply of oxygen and nutrients that fuel tumor growth and spread of the disease.

Restoring what's lost: Uncovering how liver tissue regenerates

March 12, 2012
The liver is unique among mammalian organs in its ability to regenerate after significant tissue damage or even partial surgical removal.

Therapeutically promising new findings for combating hypertension and cardiovascular disease

April 11, 2011
More than one-third of the world's population suffers from hypertension (commonly known as high blood pressure) and cardiovascular disease (disorders that affect the heart and/or blood vessels). The U.S. Agency for Healthcare ...

Do salamanders hold the solution to regeneration?

May 20, 2013
Salamanders' immune systems are key to their remarkable ability to regrow limbs, and could also underpin their ability to regenerate spinal cords, brain tissue and even parts of their hearts, scientists have found.

Researcher uses micro-fabricated blood vessels to study tumor growth and anti-angiogenic cancer therapy

July 31, 2013
Researchers have established a 3-D microfluidic system to study a biological process known as endothelial sprouting. This process represents an early step in new blood vessel growth called angiogenesis.

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.