Do salamanders hold the solution to regeneration?

Marbled Salamander, Ambystoma opacum. Location: Durham County, North Carolina, United States. Photograph by Patrick Coin, via Wikipedia.

Salamanders' immune systems are key to their remarkable ability to regrow limbs, and could also underpin their ability to regenerate spinal cords, brain tissue and even parts of their hearts, scientists have found.

In research published today in the Proceedings of the National Academy of Sciences researchers from the Australian Institute (ARMI) at Monash University found that when known as macrophages were systemically removed, salamanders lost their ability to regenerate a limb and instead formed .

Lead researcher, Dr James Godwin said the findings brought researchers a step closer to understanding what conditions were needed for regeneration.

"Previously, we thought that macrophages were negative for regeneration, and this research shows that that's not the case - if the macrophages are not present in the early phases of healing, regeneration does not occur," Dr Godwin said.

"Now, we need to find out exactly how these macrophages are contributing to regeneration. Down the road, this could lead to therapies that tweak the down a more regenerative pathway."

Salamanders deal with injury in a remarkable way. The end result is the complete functional restoration of any tissue, on any part of the body including organs. The regenerated tissue is scar free and almost perfectly replicates the injury site before damage occurred.

"We can look to salamanders as a template of what perfect regeneration looks like," Dr Godwin said.

Aside from "" applications, such as healing spinal cord and brain injuries, Dr Godwin believes that studying the healing processes of salamanders could lead to new treatments for a number of common conditions, such as heart and , which are linked to fibrosis or scarring. Promotion of scar-free healing would also dramatically improve patients' recovery following surgery.

There are indications that there is the capacity for regeneration in a range of animal species, but it has, in most cases been turned off by evolution.

"Some of these regenerative pathways may still be open to us. We may be able to turn up the volume on some of these processes," Dr Godwin said.

"We need to know exactly what salamanders do and how they do it well, so we can reverse-engineer that into human therapies."

Explore further

Biologist discovers mammal with salamander-like regenerative abilities

More information: Macrophages are required for adult salamander limb regeneration,
Provided by Monash University
Citation: Do salamanders hold the solution to regeneration? (2013, May 20) retrieved 23 July 2019 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments

May 20, 2013
a) Transplantation from 1 Salamander to the other should be tried.

b)Series of 2 or 3 Limbs should be regenerated from the same Salamander from the same body site AND the differences between them all aspects.

May 20, 2013
After successful autologous or heterologous should be removed after complete healing & integration and then regeneration speed should be studied at that body site.

May 21, 2013
When I see that there is no continuation of Discussion:
I feel there are 2 Reasons for it.

a) Those that are seriously at it have no time to discuss.
b) There are a vast majority of those that are very very stupid & do not understand and hence do not know how to discuss.

May 21, 2013
They know how to get into a manhole & dig out the sewage........grabbing jobs of others because of so called advantage syndrome.....Brain full of garbage.

May 25, 2013
They say the regeneration ability is shut off by evolution. I do not understand why it would be evolutionarily advantageous to shut off such an ability.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more