Researchers reveal the clearest new pictures of immune cells

July 23, 2013, University of Manchester

Scientists from The University of Manchester have revealed new images which provide the clearest picture yet of how white blood immune cells attack viral infections and tumours.

They show how the cells, which are responsible for fighting infections and cancer in the human body, change the organisation of their surface molecules, when activated by a type of protein found on viral-infected or .

Professor Daniel Davis, who has been leading the investigation into the immune cells, known as natural killers, said the work could provide important clues for tackling disease.

The research reveals the proteins at the surface of immune cells are not evenly spaced but grouped in clusters - a bit like stars bunched together in galaxies.

Professor Davis, Director of Research at the Manchester Collaborative Centre for Inflammation Research (MCCIR), a partnership between the University and two pharmaceutical companies GlaxoSmithKline and Astra Zeneca, said: "This is the first time scientists have looked at how these immune cells work at such a high resolution. The surprising thing was that these new pictures revealed that immune cell surfaces alter at this scale – the nano scale – which could perhaps change their ability to be activated in a subsequent encounter with a diseased cell.

"We have shown that immune cells are not evenly distributed as once thought, but instead they are grouped in very small clumps – a bit like if you were an astronomer looking at clusters of stars in the Universe and you would notice that they were grouped in clusters.

"We studied how these clusters or proteins change when the immune cells are switched on – to kill . Looking at our cells in this much detail gives us a greater understanding about how the immune system works and could provide useful clues for developing drugs to target disease in the future."

Until now the limitations of have prevented a clear understanding of how detect other cells as being diseased or healthy.

The team used high quality, super-resolution fluorescence microscopy to view the cells in blood samples in their laboratory to create the still images published in the journal Science Signalling this week.

Explore further: Scientists discover kill-switch controls immune-suppressing cells

Related Stories

Scientists discover kill-switch controls immune-suppressing cells

July 14, 2013
Scientists have uncovered the mechanism that controls whether cells that are able to suppress immune responses live or die.

Researchers identify vulnerabilities of the deadly Ebola virus

July 23, 2013
Disabling a protein in Ebola virus cells can stop the virus from replicating and infecting the host, according to researchers from the Icahn School of Medicine at Mount Sinai. The data are published in July in the journal ...

Modified immune cells seek and destroy melanoma

June 24, 2013
In this issue of the Journal of Clinical Investigation, researchers led by Scott Pruitt at Duke University and Merck Research Laboratories report on a human clinical trial in which modified dendritic cells, a component of ...

Harnessing immune cells' adaptability to design an effective HIV vaccine

March 21, 2013
In infected individuals, HIV mutates rapidly to escape recognition by immune cells. This process of continuous evolution is the main obstacle to natural immunity and the development of an effective vaccine. A new study published ...

Researcher finds way to convert blood cells into autoimmune disease treatment

July 18, 2013
(Medical Xpress)—Cells from one's own blood could be converted into a treatment for autoimmune diseases, like rheumatoid arthritis and Crohn's disease, based on the discovery of a Purdue University researcher.

Discovery of a new class of white blood cells uncovers target for better vaccine design

July 17, 2013
(Medical Xpress)—Scientists at A*STAR's Singapore Immunology Network (SIgN) have discovered a new class of white blood cells in human lung and gut tissues that play a critical role as the first line of defence against harmful ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Tachyon8491
not rated yet Jul 24, 2013
It would have been nice if some of these new pictures had been presented in the article - the old saying, you know, "A picture is worth..."

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.