Scientists discover kill-switch controls immune-suppressing cells

July 14, 2013, Walter and Eliza Hall Institute
Scientists have uncovered the mechanism that controls whether cells that are able to suppress immune responses live or die. Dr Daniel Gray (right) and Ms Antonia Policheni from Melbourne's Walter and Eliza Hall Institute of Medical Research were part of a research team that made the discovery, which could one day lead to better treatments for immune disorders. Credit: Walter and Eliza Hall Institute of Medical Research.

Scientists have uncovered the mechanism that controls whether cells that are able to suppress immune responses live or die.

The discovery of the cell death processes that determine the number of 'regulatory T cells' an individual has could one day lead to better treatments for immune disorders.

Regulatory T cells are members of a group of called T cells. Most T cells actively respond to clear the body of infections. By contrast, regulatory T cells are considered to be immune suppressing cells because they can 'switch off' an immune response to a particular molecule. This is important for preventing inappropriate of the body's own tissues, which is the underlying cause of such as lupus and .

A shortage of regulatory T cells is linked with the development of autoimmune and inflammatory conditions, while some people with higher than normal numbers of regulatory T cells cannot fight infections properly.

Dr Daniel Gray and Ms Antonia Policheni from the Walter and Eliza Hall Institute's Molecular Genetics of Cancer and Immunology divisions made the discovery about how regulatory T cell numbers are controlled as part of an international team of researchers jointly led by Dr Gray and Dr Adrian Liston who is head of the Flanders Institute for Biotechnology (VIB) Laboratory for Autoimmune Genetics at the University of Leuven, Belgium. They found that regulatory T cells are constantly being produced in the body, but their numbers are held steady by a process of cell death. The findings are published today in the journal Nature Immunology.

Cell death, or apoptosis, is important in many immune cell types for the removal of excess, defective or damaged cells. The decision of these cells on whether to live or die is controlled by a family of proteins called the 'Bcl-2 '. This includes proteins that can either promote cell survival or trigger cell death, in response to many different stimuli.

Dr Gray said the team had discovered that Bcl-2 family proteins were important determinants of regulatory T cell numbers. "Regulatory T cell death is highly dependent on the activity of two opposing Bcl-2 family proteins, called Mcl-1 and Bim," he said. "Mcl-1 is required for regulatory T cell survival, allowing them to suppress unhealthy immune responses, while Bim triggers the death of regulatory T cells. Without Mcl-1 activity, regulatory T cell numbers fall, provoking lethal autoimmune disease. Conversely, if Bim activity is lost, regulatory T cells accumulate in abnormally high numbers."

Dr Liston said the finding was exciting, because it opened up new ways to control regulatory T cell numbers in disease. "Already, there is considerable interest in a new class of agents, called 'BH-3 mimetics' that target Bcl-2-like molecules including Mcl-1," he said. "If agents that can influence regulatory T can be developed, we could see new ways to suppress autoimmune disease, by boosting regulatory T cell numbers, or to enhance beneficial immune responses, by silencing regulatory T cells."

Explore further: Maintaining immune balance involves an unconventional mechanism of T cell regulation

More information: Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3+ regulatory T cells, DOI: 10.1038/ni.2649

Related Stories

Maintaining immune balance involves an unconventional mechanism of T cell regulation

July 3, 2013
New findings from St. Jude Children's Research Hospital reveal an unconventional control mechanism involved in the production of specialized T cells that play a critical role in maintaining immune system balance. The research ...

Immune cell death defects linked to autoimmune diseases

January 23, 2013
Melbourne researchers have discovered that the death of immune system cells is an important safeguard against the development of diseases such as type 1 diabetes, rheumatoid arthritis and lupus, which occur when the immune ...

Immune cell death safeguards against autoimmune disease

September 6, 2012
Researchers at the Walter and Eliza Hall Institute have discovered that a pair of molecules work together to kill so-called 'self-reactive' immune cells that are programmed to attack the body's own organs. The finding is ...

Modulating the immune system to combat metastatic cancer

May 24, 2013
Cancer cells spread and grow by avoiding detection and destruction by the immune system. Stimulation of the immune system can help to eliminate cancer cells; however, there are many factors that cause the immune system to ...

Scientists find link between allergic and autoimmune diseases in mouse study

June 4, 2013
(Medical Xpress)—Scientists at the National Institutes of Health, and their colleagues, have discovered that a gene called BACH2 may play a central role in the development of diverse allergic and autoimmune diseases, such ...

Recommended for you

Who might benefit from immunotherapy? New study suggests possible marker

January 16, 2018
While immunotherapy has made a big impact on cancer treatment, the fact remains that only about a quarter of patients respond to these treatments.

Researchers identify new way to unmask melanoma cells to the immune system

January 16, 2018
system, which enables these deadly skin cancers to grow and spread.

How the immune system's key organ regenerates itself

January 15, 2018
With advances in cancer immunotherapy splashing across headlines, the immune system's powerful cancer assassins—T cells—have become dinner-table conversation. But hiding in plain sight behind that "T" is the organ from ...

Immunosuppressive cells in newborns play important role in controlling inflammation in early life

January 15, 2018
New research led by The Wistar Institute, in collaboration with Sun Yat-sen University in China, has characterized the transitory presence of myeloid-derived suppressor cells (MDSCs) in mouse and human newborns, revealing ...

Memory loss from West Nile virus may be preventable

January 15, 2018
More than 10,000 people in the United States are living with memory loss and other persistent neurological problems that occur after West Nile virus infects the brain.

Mould discovery in lungs paves way for helping hard to treat asthma

January 15, 2018
A team at The University of Manchester have found that in a minority of patients they studied, a standard treatment for asthma—oral steroids—was associated with increased levels of the treatable mould Aspergillus in the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.