Discovery of a new class of white blood cells uncovers target for better vaccine design

July 17, 2013
Discovery of a New Class of White Blood Cells Uncovers Target for Better Vaccine Design
Fluorescence microscopy reveals the newly discovered CD11b+ dendritic cells (green) amongst other white blood cells (orange and red) in the lung tissue. Credit: Peter See, A*STAR SIgN

(Medical Xpress)—Scientists at A*STAR's Singapore Immunology Network (SIgN) have discovered a new class of white blood cells in human lung and gut tissues that play a critical role as the first line of defence against harmful fungal and bacterial infections. This research will have significant impact on the design of vaccines and targeted immunotherapies for diseases caused by infectious microbes such as the hospital-acquired pneumonia.

The scientists also showed for the first time that key immune functions of this new class of white blood cells are similar to those found in mice. This means that findings in the mouse studies can be applied to develop advanced clinical therapies for the . The study done in collaboration with Newcastle University was published in the prestigious Immunity journal.

New Class of White Blood Cell Discovered

All immune responses against infectious agents are activated and regulated by (DCs), a specialised group of which present tiny fragments from micro-organisms, vaccines or tumours to the T cells. T cells are that circulate around our bodies to scan for cellular abnormalities and infections. Of the different T cells, T helper 17 (Th17) cells specialise in activating a protective response crucial for our body to eliminate or fungi.

In this study, the scientists identified a new subset of DCs (named CD11b+ DCs), which are capable of activating such protective Th17 response. They also showed that mice lacking the CD11b+ DCs were unable to induce the protective Th17 response against the Aspergillus fumigatus, one of the most common fungal species in hospital-acquired infections.

The team leader, Dr Florent Ginhoux from SIgN said, "As dendritic cells have the unique ability to 'sense' the type of pathogen present in order to activate the appropriate immune response, they are attractive targets to explore for vaccine development. This discovery revealed fresh inroads to better exploit dendritic cells for improved vaccine design against life-threatening fungal infections."

Acting Executive Director of SIgN, Associate Professor Laurent Rénia said, "Life-threatening fungal infections have increased over the years yet treatment options remain limited. This study demonstrates how fundamental research that deepens our understanding of the body's immune system can translate into potential clinical applications that could save lives and impact healthcare."

Explore further: Discovery of new white blood cell reveals target for better vaccine design

More information: www.cell.com/immunity/fulltext … 05-7?switch=standard

Related Stories

Discovery of new white blood cell reveals target for better vaccine design

July 27, 2012
Researchers in Newcastle and Singapore have identified a new type of white blood cell which activates a killing immune response to an external source – providing a new potential target for vaccines for conditions such ...

Scientists discover dendritic cells key to activating human immune responses

July 16, 2012
Scientists at A*STAR’s Singapore Immunology Network (SIgN), in collaboration with Newcastle University, UK, the Singapore Institute of Clinical Sciences and clinicians from multiple hospitals in Singapore, have identified ...

Mystery to the origin of long-lived, skin-deep immune cells uncovered

June 7, 2012
Scientists at A*STAR’s Singapore Immunology Network (SIgN) uncovered the origin of a group of skin-deep immune cells that act as the first line of defence against harmful germs and skin infections. SIgN scientists discovered ...

Jump-starting cheaper cancer vaccines

September 26, 2012
Dendritic cells (DCs)—workhorses of the immune system—derived from human embryonic stem cells (hESCs) may provide an economical way of generating off-the-shelf therapeutic vaccines against cancers, according to research ...

Skin sentry cells promote distinct immune responses

July 21, 2011
A new study reveals that just as different soldiers in the field have different jobs, subsets of a type of immune cell that polices the barriers of the body can promote unique and opposite immune responses against the same ...

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.