Scientists watch live brain cell circuits spark and fire (w/ Video)

August 8, 2013
Scientists used a new protein, called ArcLight, to watch nerve cell electricity in a live fly brain. Credit: Courtesy of Nitabach & Pieribone Labs, Yale School of Medicine, New Haven, CT

Scientists used fruit flies to show for the first time that a new class of genetically engineered proteins can be used to watch nerve cell electrical activity in live brains. The results, published in Cell, suggest these proteins may be a promising new tool for mapping brain cell activity in multiple animals and for studying how neurological disorders disrupt normal nerve cell signaling. Understanding brain cell activity is a high priority of the President's Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative.

Brain cells use electricity to control thoughts, movements and senses. Ever since the late nineteenth century, when Dr. Luigi Galvani induced to move with electric shocks, scientists have been trying to watch nerve cell electricity to understand how it is involved in these actions. Usually they directly monitor electricity with cumbersome electrodes or toxic voltage-sensitive dyes, or indirectly with calcium detectors. This study, led by Michael Nitabach, Ph.D., J.D., and Vincent Pieribone, Ph.D., at the Yale School of Medicine, New Haven, CT, shows that a class of proteins, called genetically encoded fluorescent voltage indicators (GEVIs), may allow researchers to watch nerve cell electricity in a live animal.

Dr. Pieribone and his colleagues developed ArcLight, the protein used in this study. ArcLight fluoresces, or glows, as a nerve cell's voltage changes and enables researchers to watch, in real time, the cell's . In this study, Dr. Nitabach and his colleagues engineered fruit flies to express ArcLight in brain cells that control the fly's sleeping cycle or sense of smell. Initial experiments in which the researchers simultaneously watched brain cell electricity with a microscope and recorded voltage with electrodes showed that ArcLight can accurately monitor electricity in a living brain. Further experiments showed that ArcLight illuminated electricity in that were previously inaccessible using other techniques.

The video will load shortly.
ArcLight protein allows scientist to watch fly brain cells fire. Credit: Courtesy of Nitabach & Pieribone Labs, Yale School of Medicine, New Haven, CT

Finally, ArcLight allowed the researchers to watch spark and fire while the flies were awakening and smelling. These results suggest that in the future neuroscientists may be able to use ArcLight and similar GEVIs in a variety of ways to map brain cell circuit activity in normal and disease states.

Explore further: Researchers discover how brain cells change their tune (w/ Video)

More information: Cao et al. "Genetically targeted optical electrophysiology in intact neural circuits," Cell, August 8, 2013, DOI: 10.1016/j.cell.2013.07.027

Related Stories

Researchers discover how brain cells change their tune (w/ Video)

July 25, 2013
Brain cells talk to each other in a variety of tones. Sometimes they speak loudly but other times struggle to be heard. For many years scientists have asked why and how brain cells change tones so frequently. Today National ...

A faster vessel for charting the brain

July 25, 2013
Princeton University researchers have created "souped up" versions of the calcium-sensitive proteins that for the past decade or so have given scientists an unparalleled view and understanding of brain-cell communication.

From bacteria to lions – how tiny proteins which control our responses to both could be linked

July 29, 2013
New research from the University of Birmingham and the University of Cambridge has uncovered a relationship between proteins that control immunity and proteins that control activity in the brain.

Key target responsible for triggering detrimental effects in brain trauma identified

July 25, 2013
Researchers studying a type of cell found in the trillions in our brain have made an important discovery as to how it responds to brain injury and disease such as stroke. A University of Bristol team has identified proteins ...

Study uses Botox to find new wrinkle in brain communication

May 2, 2013
National Institutes of Health researchers used the popular anti-wrinkle agent Botox to discover a new and important role for a group of molecules that nerve cells use to quickly send messages. This novel role for the molecules, ...

Recommended for you

Navigational view of the brain thanks to powerful X-rays

October 18, 2017
If brain imaging could be compared to Google Earth, neuroscientists would already have a pretty good "satellite view" of the brain, and a great "street view" of neuron details. But navigating how the brain computes is arguably ...

'Wasabi receptor' for pain discovered in flatworms

October 18, 2017
A Northwestern University research team has discovered how scalding heat and tissue injury activate an ancient "pain" receptor in simple animals. The findings could lead to new strategies for analgesic drug design for the ...

Brain activity predicts crowdfunding outcomes better than self-reports

October 18, 2017
Surveys and self-reports are a time-honored way of trying to predict consumer behavior, but they have limitations. People often give socially desirable answers or they simply don't know or remember things clearly.

Brain-machine interfaces to treat neurological disease

October 18, 2017
Since the 19th century at least, humans have wondered what could be accomplished by linking our brains – smart and flexible but prone to disease and disarray – directly to technology in all its cold, hard precision. Writers ...

Scientists may have found a cause of dyslexia

October 18, 2017
A duo of French scientists said Wednesday they may have found a physiological, and seemingly treatable, cause for dyslexia hidden in tiny light-receptor cells in the human eye.

Changing stroke definitions is causing chaos, warns professor

October 18, 2017
Proposals to change the definitions of stroke and related conditions are causing confusion and chaos in clinical practice and research, a Monash University associate professor has warned.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.