Genetic breakthrough another step to understanding schizophrenia

September 9, 2013, University of Western Australia

(Medical Xpress)—A consortium of scientists from 20 countries, including researchers from The University of Western Australia, has made a major breakthrough in understanding the genetic basis of the debilitating disorder, schizophrenia.

More than 175 scientists from 99 institutions across Europe, the United States of America and Australia contributed to a genome-wide association analysis which identified 13 new risk loci for schizophrenia.

In an article published in the journal, Nature Genetics, the study authors write that the results provide deeper insight into the genetic architecture of schizophrenia than ever before achieved, and provide a pathway to further research.

"For the first time, there is a clear path to increased knowledge of the etiology of schizophrenia through the application of standard, off-the-shelf genomic technologies for elucidating the effects of common variation," the authors wrote.

Schizophrenia is a complex which affects about one per cent of people over their lifetime, leading to prolonged or recurrent episodes that impair severely social functioning and quality of life.

In terms of the 'global burden of disease and disability' index, developed by the World Health Organization, it ranks among the top 10 disorders, along with cancer, heart disease, diabetes and other non-communicable diseases.

Winthrop Professor Assen Jablensky, director of UWA's Centre for Clinical Research in Neuropsychiatry (CCRN) at Graylands Hospital, and Professor Luba Kalaydjieva, of the UWA-affiliated Western Australian Institute for Medical Research (WAIMR), led the UWA research team which took part in the study.

Professor Jablensky said that while a strong in the causation of schizophrenia had been well established, the role of specific genes and the mechanisms of their regulation remained largely unknown.

"Until recently, results of and association studies could explain only a small fraction of the estimated heritability of the disorder and of its ''," Professor Jablensky said.

However recent technological advances, enabling efficient coverage of the entire human genome with millions of single nucleotide polymorphisms (SNPs) as genetic markers, had given rise to a new generation of genome-wide association studies (GWAS), which trace the DNA differences between people affected with the disease and healthy control individuals.

"Since the effects of individual SNPs are quite tiny, their reliable measurement requires very large samples of adequately diagnosed patients and controls," Professor Jablensky said.

"This recent study reports on a major breakthrough in the understanding of the of schizophrenia, achieved through meta-analysis of GWAS datasets contributed by a large international Psychiatric Genomics Consortium (PGC) - which includes the UWA research team."

A WA case-control sample consisting of 893 schizophrenia patients and healthy controls was part of a collection of 21,246 schizophrenia cases and 38,072 controls from 19 research centres and consortia across Europe, Australia and the USA.

The study found that a total of 8300 SNPs contribute to the risk for schizophrenia and account for at least 32 per cent of the variance in liability.

"A particularly important result of this study is that many of these SNPs are located on a molecular pathway involved in neuronal calcium signalling, which suggests a novel pathogenetic link in the causation of schizophrenia and possibly other psychotic disorders," Professor Jablensky said.

He said ongoing and future studies by the UWA research team would aim to further refine the genetic analyses of the WA schizophrenia study (which at present includes 1259 persons), and to test neurobiological hypotheses about the treatment responses of genetically defined subsets of patients.

The article, "Genome-wide association analysis identifies 13 new risk loci for ," was published in the August 25 online edition of Nature Genetics.

Explore further: Study provides strongest clues to date for causes of schizophrenia

Related Stories

Study provides strongest clues to date for causes of schizophrenia

August 25, 2013
A new genome-wide association study (GWAS) estimates the number of different places in the human genome that are involved in schizophrenia.

New genetic risk factor found for schizophrenia

August 1, 2013
Researchers at Emory's Rollins School of Public Health have identified a large duplication on chromosome 7q11.23 as a new risk factor for schizophrenia.  (7q11.23 refers to the specific location of the duplicated region ...

Scientists discover genetic changes that may contribute to the onset of schizophrenia

July 16, 2013
Scientists from the Centre for Addiction and Mental Health (CAMH) have discovered rare genetic changes that may be responsible for the onset of schizophrenia. Several of these same genetic lesions had previously been found ...

More links found between schizophrenia, cardiovascular disease

January 31, 2013
A new study, to be published in the Feb. 7, 2013 issue of the American Journal of Human Genetics, expands and deepens the biological and genetic links between cardiovascular disease and schizophrenia. Cardiovascular disease ...

New patterns found in the genetic relationship of five major psychiatric disorders

August 11, 2013
The largest genome-wide study of its kind has determined how much five major mental illnesses are traceable to the same common inherited genetic variations. Researchers funded in part by the National Institutes of Health ...

Largest study reveals five major psychiatric disorders share common genetic risk factors

February 27, 2013
For the first time, scientists have discovered that five major psychiatric disorders—autism, attention deficit-hyperactivity disorder, bipolar disorder, major depressive disorder and schizophrenia—share several common ...

Recommended for you

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

The coming of age of gene therapy: A review of the past and path forward

January 11, 2018
After three decades of hopes tempered by setbacks, gene therapy—the process of treating a disease by modifying a person's DNA—is no longer the future of medicine, but is part of the present-day clinical treatment toolkit. ...

Large-scale study to pinpoint genes linked to obesity

January 10, 2018
It's not just diet and physical activity; your genes also determine how easily you lose or gain weight. In a study published in the January issue of Nature Genetics, researchers at the Icahn School of Medicine at Mount Sinai ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.