The Janus-like nature of JAM-A

September 30, 2013
Atherosclerosis: The Janus-like nature of JAM-A
Multiphoton microscopy makes it possible to image the vessel wall (blue: collagen) and inner lining of an artery that has been subjected to atherosclerosis-promoting conditions. Staining for endothelial cells (red) and JAM-A (green) reveals the localization of JAM-A at the cell junctions and the first signs of its redistribution to the cell surface. Areas of overlap with the endothelial cell marker gives rise to the intense yellow signal.

A new study by Ludwig-Maximilians-Universitaet (LMU) in Munich researchers led by Christian Weber sheds light on the role of the adhesion molecule JAM-A in the recruitment of immune cells to the inner layer of arteries – which promotes the development of atherosclerosis.

Multiphoton microscopy makes it possible to image the vessel wall (blue: collagen) and inner lining of an artery that has been subjected to atherosclerosis-promoting conditions. Staining for endothelial (red) and JAM-A (green) reveals the localization of JAM-A at the cell junctions and the first signs of its redistribution to the cell surface. Areas of overlap with the endothelial cell marker gives rise to the intense yellow signal.

Atherosclerosis is characterized by the formation of fatty "plaques" on the inner lining of the arteries, and is facilitated by high levels of fat in the diet. These "plaques" constrict the vessel, restrict the flow of blood, and may precipitate strokes and heart attacks. Monocytes, which belong to the immune system and help to defend the body against pathogens, also play a central role in the development of atherosclerotic lesions. In regions of the vasculature where the normal pattern of blood flow is disturbed, monocytes can penetrate the vessel wall and release signal molecules into the underlying tissue, which attract other immune cells to the site. The resulting inflammatory reaction then leads to the build-up of plaques.

Professor Christian Weber of the Institute for Prophylaxis and Epidemiology of Cardiovascular Diseases at LMU studies the molecular processes that facilitate the migration of these cells between the cells of the vessel wall. In the latest issue of the journal Circulation, he and his team report the results of an investigation carried out in collaboration with colleagues based at Maastricht University, which was designed to elucidate the role of an called JAM-A in the development of atherosclerosis.

Molecular multitasking

JAM-A is of interest because it is expressed both in the blood-vessel wall and in white blood cells, including monocytes. The protein harbours a variety of binding sites, and can interact with itself and several other binding partners. The acronym stands for "Junctional Adhesion Molecule-A", and refers to its primary function in mediating cell-cell contacts. In essence, it serves as a molecular zipper between cells. In the new study, Weber and his colleagues have looked at the effects of the targeted reduction of JAM-A levels in specific cell types.

The walls of veins and arteries are made up of a monolayer of so-called endothelial cells, which are held together by cell-cell junctions that include JAM-A. At sites, where laminar blood flow is perturbed, JAM-A is redistributed away from the intercellular junctions to the cell surface. This promotes attachment of monocytes and allows them to migrate between the endothelial cells into the tissues. Weber and his team have now shown that, when the levels of JAM-A in are reduced, fewer monocytes get through, and fewer lesions are formed.

This might suggest that pharmacological blockade of JAM-A could reduce the incidence of atherosclerotic lesions, but there is a catch. For when the molecule is deleted from monocytes, the cells get trapped as they migrate through the endothelial cell layer. This results in local damage to the , and enhances the formation of plaques.

"In order to develop anti-atherosclerotic drugs that target JAM-A, one must take the whole repertoire of its interactions into consideration," says Christian Weber. He is now trying to identify the binding site responsible for the plaque-promoting effects of the molecule. "A drug that specifically blocked only that site could have a protective effect on the vasculature without provoking deleterious side-effects," he says.

Explore further: Monocyte migrations

More information: Endothelial JAM-A guides monocytes into flow-dependent predilection sites of atherosclerosis, Martin M.N. Schmitt, MSc; Remco T.A. Megens, PhD; Alma Zernecke, MD; Kiril Bidzhekov, PhD; Nynke M. van den Akker, PhD; Timo Rademakers, PhD; Marc A. van Zandvoort, PhD; Tilman M. Hackeng, PhD; Rory R. Koenen, PhD; and Christian Weber, Circulation,

Related Stories

Monocyte migrations

February 19, 2013
LMU researchers led by Christian Weber have, for the first time, elucidated how cells that promote the development of atherosclerosis find their way to the blood vessel wall, where they stimulate the formation of obstructive ...

Macrophage proliferation appears to drive progression of atherosclerosis

August 11, 2013
New insights into the development of vulnerable atherosclerotic plaques could lead to better treatment or prevention of heart attacks and strokes. In a report being published online in Nature Medicine, researchers at the ...

Extending the effective lifetime of stents

October 6, 2011
Implanted stents can reopen obstructed arteries, but regrowth of cells into the vessel wall can entail restenosis. Research at LMU now shows that an antimicrobial peptide inhibits restenosis and promotes vascular healing. ...

Fast track to vascular disease

June 3, 2011
In Western societies, atherosclerosis of the arteries is one of the leading causes of death. Chronic, localized inflammation of the blood vessel wall facilitates the growth of fibrous plaques, which leads to narrowing or ...

New target for the fight against cancer as a result of excessive blood vessel formation

August 1, 2013
New blood vessel formation (angiogenesis) stimulates the growth of cancer and other diseases. Anti-angiogenic inhibitors slow down cancer growth by disrupting the blood supply to the tumor. To date, the success of these treatments ...

A storm in our veins

September 18, 2013
Suppose you're hiking through the forest on a sunny afternoon as a light breeze passes through the trees, gently grazing your skin. Suddenly the sky opens up and a rainstorm ensues. The trees keep you dry, but the weather ...

Recommended for you

Two studies support intensive blood pressure control for long-term health, quality of life

August 23, 2017
Two studies provide additional support for lowering systolic blood pressure to an intensive goal of 120 mmHg - far below the standard guidelines of 140 mmHg - to reduce the risk of heart disease in high-risk patients with ...

Brain activity may be predictor of stress-related cardiovascular risk

August 23, 2017
The brain may have a distinctive activity pattern during stressful events that predicts bodily reactions, such as rises in blood pressure that increase risk for cardiovascular disease, according to new proof-of-concept research ...

'Shapeshifter' that regulates blood clotting is visually captured for the first time

August 23, 2017
We are normally born with a highly sophisticated array of molecules that act as "sentries," constantly scanning our bodies for injuries such as cuts and bruises. One such molecular sentry, known as von Willebrand factor (VWF), ...

Dramatic new studies into inflammation in the infarcted heart could lead to changes in therapy

August 23, 2017
A medical research collaborative has demonstrated that the response of the human heart to an infarction is very different than previously thought. The study, led by cardiologist Borja Ibáñez and published as two independent ...

New molecule may hold the key to triggering the regeneration and repair of damaged heart cells

August 21, 2017
New research has discovered a potential means to trigger damaged heart cells to self-heal. The discovery could lead to groundbreaking forms of treatment for heart diseases. For the first time, researchers have identified ...

Researchers investigate the potential of spider silk protein for engineering artificial heart

August 18, 2017
Ever more people are suffering from cardiac insufficiency, despite significant advances in preventing and minimising damage to the heart. The main cause of reduced cardiac functionality lies in the irreversible loss of cardiac ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.