Database of disease genes shows potential drug therapies

October 13, 2013
Twin brothers Obi Griffith, Ph.D., and Malachi Griffith, Ph.D., have created a comprehensive database that matches thousands of disease genes with approved or experimental drugs that target those genes. Credit: Robert Boston, Washington University in St. Louis

Researchers at Washington University School of Medicine in St. Louis have created a massive online database that matches thousands of genes linked to cancer and other diseases with drugs that target those genes. Some of the drugs are approved by the U.S. Food and Drug Administration, while others are in clinical trials or just entering the drug development pipeline.

The was developed by identical twin brothers, Obi Griffith, PhD, and Malachi Griffith, PhD, whose interest in pairing drugs with is as much personal as it is scientific. Their mother died of breast cancer 17 years ago, just weeks before their high school graduation.

"We wanted to create a comprehensive database that is user-friendly, something along the lines of a Google search engine for disease genes," explained Malachi Griffith, a research instructor in genetics. "As we move toward personalized medicine, there's a lot of interest in knowing whether drugs can target mutated genes in particular patients or in certain diseases, like breast or lung cancer. But there hasn't been an easy way to find that information."

Details of the Drug Gene Interaction database are reported online Oct. 13 in Nature Methods. The database is weighted heavily toward cancer genes but also includes genes involved in Alzheimer's disease, heart disease, diabetes and many other illnesses. The Griffiths created the database with a team of scientists at The Genome Institute at Washington University in St. Louis.

The database is easy to search and geared toward researchers and physician-scientists who want to know whether errors in disease genes – identified through genome sequencing or other methods – potentially could be targeted with existing therapies. Additional genes included in the database could be the focus of future efforts because they belong to classes of genes that are thought to make promising drug targets.

"Developing the database was a labor of love for the Griffiths," said senior author Richard K. Wilson, PhD, director of The Genome Institute. "There's an amazing depth to this resource, which will be invaluable to researchers working to design better treatment options for patients."

Wilson and his colleagues caution that the database is intended for research purposes and that it does not recommend treatments. The primary purpose of the database is to further clinical research aimed at treating diseases more effectively.

"This database gets us one step closer to that goal," Malachi Griffith said. "It's a really rich resource, and we're excited to make it available to the scientific community."

The database, which took several years to develop, is publicly available and free to use. It includes more than 14,000 drug-gene interactions involving 2,600 genes and 6,300 drugs that target those genes. Another 6,700 genes are in the database because they potentially could be targeted with future drugs.

Before now, researchers wanting to find out whether could be targeted with drugs had to search piecemeal through scientific literature, databases or other sources of information, some of which were not publicly available or easily searchable. Further, many of the existing databases have different ways of identifying genes and drugs, a "language" barrier that can turn a definitive search into an exhaustive exercise.

The Griffith brothers are experts in bioinformatics, a field of science that integrates biology and computing and involves analyzing large amounts of data. The brothers got the idea for the drug-gene interaction database after they repeatedly were asked whether lists of genes identified through genome sequencing could be targeted with existing drugs.

"It shouldn't take a computer wizard to answer that question," said Obi Griffith, research assistant professor of medicine. "But in reality, we often had to write special software to find out. Now, researchers can quickly and easily search for themselves."

The new database brings together information from 15 publicly available databases in the United States, Canada, Europe and Asia. Users can enter the name of a single gene or lists of many genes to retrieve drugs targeting those genes. The search provides the names of drugs targeted to each gene and details whether the drug is an inhibitor, antibody, vaccine or another type. The search results also indicate the source of the information so users can dig deeper, if they choose.

Explore further: 'Wildly heterogeneous genes'

More information: Griffith M, Griffith OL, Coffman AC, Weible JV, McMichael JF, Spies NC, Koval J, Das I, Callaway MB, Eldred JM, Miller CA, Subramanian J, Govindan R, Kumar RD, Bose R, Ding L, Walker JR, Larson DE, Dooling DJ, Smith SM, Ley TJ, Mardis ER and Wilson RK. DGIdb - Mining the druggable genome. Nature Methods. Oct. 13, 2013. DOI: 10.1038/nmeth.2689

Related Stories

'Wildly heterogeneous genes'

September 15, 2013
Cancer tumors almost never share the exact same genetic mutations, a fact that has confounded scientific efforts to better categorize cancer types and develop more targeted, effective treatments.

Scientists generate largest data set of cancer-related genetic variations

July 15, 2013
Scientists at the National Cancer Institute (NCI) have generated a data set of cancer-specific genetic variations and are making these data available to the research community, according to a study published in Cancer Research, ...

Study details genes that control whether tumors adapt or die when faced with p53 activating drugs

May 22, 2013
When turned on, the gene p53 turns off cancer. However, when existing drugs boost p53, only a few tumors die – the rest resist the challenge. A study published in the journal Cell Reports shows how: tumors that live even ...

New survey of DNA alterations could aid search for cancer genes

September 27, 2013
Scanning the DNA of nearly 5,000 tumor samples, a team led by scientists at Dana-Farber Cancer Institute and the Broad Institute has identified 140 regions of scrambled genetic code believed to contain many undiscovered cancer ...

In lung cancer, smokers have 10 times more genetic damage than never-smokers

September 13, 2012
Lung cancer patients with a history of smoking have 10 times more genetic mutations in their tumors than those with the disease who have never smoked, according to a new study from Washington University School of Medicine ...

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.