Towards a better understanding of inherited hearing loss

October 15, 2013

A team of researchers led by Dr. Michel Cayouette at the IRCM made an important discovery, published online yesterday by the scientific journal Developmental Cell, that could better explain some inherited forms of hearing loss in humans. The Montréal scientists identified a group of proteins crucial for shaping the cellular organ responsible for detecting sounds.

For a human to hear, sound-induced vibrations in the inner ear must first be transformed into electrical impulses before they can be relayed to the brain. This transformation is performed by "" (or sensory cells) located in the . On the surface of these cells, microscopic hair-like protrusions known as stereocilia act as specialized sensors to detect vibrations.

"During embryonic development, these stereocilia develop into a characteristic V-shaped brush," says Dr. Cayouette, Director of the Cellular Neurobiology research unit at the IRCM. "In addition, all cells orient their brush with the V pointing in the same direction. This polarized organization is critical for sensory function, but remains poorly understood."

"We studied a group of proteins known to control cell division in the organism and discovered a new role they play in the auditory system," explains Dr. Basile Tarchini, postdoctoral fellow in Dr. Cayouette's laboratory and first author of the study. "We showed that these proteins occupy a specific region at the to define the exact placement of stereocilia and enable the creation of the V-shaped brush."

"Furthermore, we discovered that one of the proteins is also required for coordinating the orientation of the brushes among neighbouring cells, thereby ensuring that the V formed by each brush points in the same direction," adds Dr. Tarchini. "Our results strongly suggest, for the first time, that this group of proteins could be the link between two important molecular mechanisms: the system responsible for the placement of stereocilia into a V-shaped brush at the cell surface, and the system that orients this V-shaped structure in the surrounding tissue."

"Recent studies show that mutations in one of the proteins we studied are associated with inherited forms of in humans," concludes Dr. Cayouette. "By defining a function for this class of proteins in hair , our work helps explain the mechanisms that could cause these conditions."

Explore further: Hearing loss clue uncovered

More information: www.cell.com/developmental-cel … 1534-5807(13)00537-6

Related Stories

Hearing loss clue uncovered

June 11, 2013
(Medical Xpress)—Researchers from the Department of Otolaryngology at the University of Melbourne and the Department of Biochemistry and Molecular Biology at Monash University have discovered how hearing loss in humans ...

Scientists identify molecules in the ear that convert sound into brain signals

December 6, 2012
For scientists who study the genetics of hearing and deafness, finding the exact genetic machinery in the inner ear that responds to sound waves and converts them into electrical impulses, the language of the brain, has been ...

Researchers create the inner ear from stem cells, opening potential for new treatments

July 10, 2013
Indiana University scientists have transformed mouse embryonic stem cells into key structures of the inner ear. The discovery provides new insights into the sensory organ's developmental process and sets the stage for laboratory ...

Researchers discover two-step mechanism of inner ear tip link regrowth

June 11, 2013
A team of NIH-supported researchers is the first to show, in mice, an unexpected two-step process that happens during the growth and regeneration of inner ear tip links. Tip links are extracellular tethers that link stereocilia, ...

Cellular channels vital for hearing identified

July 18, 2013
Ending a 30-year search by scientists, researchers at Boston Children's Hospital have identified two proteins in the inner ear that are critical for hearing, which, when damaged by genetic mutations, cause a form of delayed, ...

New findings on the workings of the inner ear

October 2, 2012
The sensory cells of the inner ear have tiny hairs called stereocilia that play a critical part in hearing. It has long been known that these stereocilia move sideways back and forth in a wave-like motion when stimulated ...

Recommended for you

Study finds walnuts may promote health by changing gut bacteria

July 28, 2017
Research led by Lauri Byerley, PhD, RD, Research Associate Professor of Physiology at LSU Health New Orleans School of Medicine, has found that walnuts in the diet change the makeup of bacteria in the gut, which suggests ...

Green tea ingredient may ameliorate memory impairment, brain insulin resistance, and obesity

July 28, 2017
A study published online in The FASEB Journal, involving mice, suggests that EGCG (epigallocatechin-3-gallate), the most abundant catechin and biologically active component in green tea, could alleviate high-fat and high-fructose ...

Manipulating a type of brain cell gets weight loss results in mice

July 28, 2017
A new study has found something remarkable: the activation of a particular type of immune cell in the brain can, on its own, lead to obesity in mice. This striking result provides the strongest demonstration yet that brain ...

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.