On the lookout for the genes behind disease

October 11, 2013, CORDIS
On the lookout for the genes behind disease
Credit: Shutterstock

Today's information age has provided the tools for biology to yield huge numbers of DNA sequences from many different species. Modern technology has made DNA sequencing simpler, less expensive and more reliable - with huge benefits for diagnosing and treating medical problems.

Previously the challenge was to collect genetic data. Today the challenge lies in making sense of it.

"We're taking an evolutionary approach to making sense of DNA sequences - that means we examine the way that genes have evolved in order to understand better how they work," says Professor Aoife McLysaght of Trinity College Dublin, Ireland. She received a European Research Council (ERC) Starting grant worth around EUR 1.4 million for the project.

With her EU project DOSE ('Dosage sensitive genes in evolution and disease'), McLysaght is investigating differences between gene doses - that is, having more or less of the gene and the resulting effect on health.

"Changes in the amount of a gene between individuals - dose changes - are a relatively recent discovery and are sometimes implicated in disease," explains McLysaght. In simple terms, she has taken an to figuring out which dose changes are acceptable, and which are likely to be involved in .

For McLysaght this makes sense if you think about evolution as a large-scale natural experiment. She explains how over evolutionary time, just about every DNA change and recombination has been tried out, but only those that allowed us to survive were retained.

"By looking at evolution we can understand the acceptable and unacceptable changes to DNA," says McLysaght. "DNA changes that were unacceptable during evolution are likely to be the same as the ones that cause disease today."

By recruiting a team of talented post-doctorate and PhD students, McLysaght is hoping to bring together many different kinds of evolutionary and genomic information in order to make a sophisticated prediction of the dosage effects of any gene in the human genome.

"In this way, we will accelerate the discovery of ," she says.

Although the project is still in its early stages and not slated for completion before the end of 2017, McLysaght and her colleagues have already published a paper on their research. The publication, 'Genome-wide deserts for copy number variation in vertebrates', outlines their strategy for homing in on diseased genes.

The team explains how DNA alterations of a genome, known as copy-number variations (CNVs) - which represent duplicated or deleted genes - are frequently associated with human disease. "We are hopeful that we will make a really significant contribution during the five years of this project," says the professor.

By enriching the information used in pinpointing disease , the team hopes to accelerate the detection process and make it less expensive. This has huge potential for more accurate diagnostics, which represents the first step towards better therapies. The new genetic strategy could pave the way to a whole new paradigm in treating congenital diseases - from blindness to osteoarthritis.

Explore further: Whole DNA sequencing reveals mutations, new gene for blinding disease

More information: Project factsheet cordis.europa.eu/projects/rcn/104726_en.html

Related Stories

Whole DNA sequencing reveals mutations, new gene for blinding disease

September 16, 2013
Retinitis pigmentosa (RP) is a genetic disease that causes progressive loss of vision and is caused by mutations in more than 50 genes. Conventional methods for identification of both RP mutations and novel RP genes involve ...

New survey of DNA alterations could aid search for cancer genes

September 27, 2013
Scanning the DNA of nearly 5,000 tumor samples, a team led by scientists at Dana-Farber Cancer Institute and the Broad Institute has identified 140 regions of scrambled genetic code believed to contain many undiscovered cancer ...

Sieving through 'junk' DNA reveals cancer-causing genetic mutations

October 3, 2013
Researchers can now identify DNA regions within non-coding DNA, the major part of the genome that is not translated into a protein, where mutations can cause diseases such as cancer.

Recommended for you

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.