Researchers discover new therapeutic agents that may benefit leukemia patients

October 4, 2013

An Indiana University cancer researcher and his colleagues have discovered new therapeutic targets and drugs that may someday benefit people with certain types of leukemia or blood cancer.

Reuben Kapur, Ph.D., the Frieda and Albrecht Kipp Professor of Pediatrics at the IU School of Medicine and a researcher at the Indiana University Melvin and Bren Simon Cancer Center, and colleagues discovered in pre-clinical and pharmacological models that cells with a mutation in the KIT receptor—an oncogenic/cancerous form of the receptor—in mast cell leukemia and acute myeloid leukemia can be stopped.

Their findings were published online Sept. 16 in the Journal of Clinical Investigation and appeared in print Oct. 1.

According to Dr. Kapur, activating mutations of KIT receptors are almost always associated with a type of leukemia called mast cell leukemia. The mutations in the KIT receptor are found in about 90 percent of patients with this type of leukemia. In addition, activating of KIT are also exclusively associated with a subtype of known as core binding factor leukemia. When KIT is associated with these two types of leukemia, the survival rate for patients is profoundly reduced in comparison to patients who do not have this mutation.

Dr. Kapur and colleagues investigated whether they could shut down the growth response that is induced by this mutation.

"We identified two new targets in leukemic cells bearing this mutation, which when targeted or inhibited, cause to die," Dr. Kapur said.

The researchers discovered that the two targets are Rac GTPase and Pak (p21-activated kinase). In return, they designed a novel Rac inhibitor—EHop-016—that is considerably more potent than previously described inhibitors of Rac. They also demonstrated a novel role for Pak inhibition in leukemia using an existing Pak inhibitor.

Both are being tested in pre-clinical models to further examine their growth inhibitory properties as well as long-term treatment-associated toxicity.

Dr. Kapur said treatments for leukemia have remained mostly unchanged in the past 30 years. Thus, researchers continue to search for better and more effective ways to treat this debilitating disease.

"We've been looking for new targets and new ways of treating leukemia and special types of leukemias," Dr. Kapur said.

"Leukemia is an extremely complex disease. It's a combination of multiple alterations in the patient's DNA, which eventually results in leukemia. Therefore, it will be very difficult to cure with just one drug. It will have to be a combination of multiple drugs, if we're to cure this disease."

Dr. Kapur is also professor of biochemistry and molecular biology, of medical and molecular genetics, and of microbiology and immunology at the IU School of Medicine.

Principal authors of the study were Suranganie Dharmawardhane and Cornelis P. Vlaar of the Department of Pharmaceutical Sciences at the University of Puerto Rico; Ramon V. Tiu and Valeria Visconte of the Taussig Cancer Institute, Cleveland Clinic; Ray R. Mattingly of Wayne State University; Joydeep Gosh, Emily Sims, Baskar Ramdas, Anindya Chatterjee, Raghuveer Singh Mali and Holly Martin of the IU Department of Pediatrics, Herman B Wells Center for Pediatric Research; and Veerendra Munugalavadla of the Department of Cancer Immunotherapy and Hematology, Genentech Inc.

Explore further: Cardiovascular drug may offer new treatment for some difficult types of leukemia

Related Stories

Cardiovascular drug may offer new treatment for some difficult types of leukemia

September 12, 2011
A drug now prescribed for cardiovascular problems could become a new tool in physicians' arsenals to attack certain types of leukemia that so far have evaded effective treatments, researchers say.

A new target in acute myeloid leukemia

July 16, 2012
Acute myeloid leukemia, a common leukemia in adults, is characterized by aberrant proliferation of cancerous bone marrow cells. Activating mutations in a protein receptor known as FLT3 receptor are among the most prevalent ...

Therapies for ALL and AML targeting MER receptor hold promise of more effect with less side-effect

March 11, 2013
Two University of Colorado Cancer Center studies show that the protein receptor Mer is overexpressed in many leukemias, and that inhibition of this Mer receptor results in the death of leukemia cells – without affecting ...

Researchers discover how a mutated protein outwits evolution and fuels leukemia

June 20, 2013
Scientists have discovered the survival secret to a genetic mutation that stokes leukemia cells, solving an evolutionary riddle and paving the way to a highly targeted therapy for leukemia. In a paper published today in Cell, ...

Study suggests way to fight therapy resistant leukemia by blocking DNA repair

August 8, 2013
New research posted online by the Nature journal Leukemia suggests blocking part of a DNA repair complex that helps some types of leukemia resist treatment can increase the effectiveness of chemotherapy and enhance survival.

Leukemia cells are addicted to a healthy gene

September 30, 2013
What keeps leukemia cells alive almost forever, able to continue dividing endlessly and aggressively? New research at the Weizmann Institute suggests that, in around a quarter of all leukemias, the cancer cells rely on an ...

Recommended for you

Zebrafish larvae could be used as 'avatars' to optimize personalized treatment of cancer

August 21, 2017
Portuguese scientists have for the first time shown that the larvae of a tiny fish could one day become the preferred model for predicting, in advance, the response of human malignant tumors to the various therapeutic drugs ...

Scientists discover vitamin C regulates stem cell function, curbs leukemia development

August 21, 2017
Not much is known about stem cell metabolism, but a new study from the Children's Medical Center Research Institute at UT Southwestern (CRI) has found that stem cells take up unusually high levels of vitamin C, which then ...

Searching for the 'signature' causes of BRCAness in breast cancer

August 21, 2017
Breast cancer cells with defects in the DNA damage repair-genes BRCA1 and BRCA2 have a mutational signature (a pattern of base swaps—e.g., Ts for Gs, Cs for As—throughout a genome) known in cancer genomics as "Signature ...

How a non-coding RNA encourages cancer growth and metastasis

August 21, 2017
A mechanism that pushes a certain gene to produce a non-coding form of RNA instead of its protein-coding alternative can promote the growth of cancer, report researchers at the Medical University of South Carolina (MUSC) ...

Spaser can detect, kill circulating tumor cells to prevent cancer metastases, study finds

August 21, 2017
A nanolaser known as the spaser can serve as a super-bright, water-soluble, biocompatible probe capable of finding metastasized cancer cells in the blood stream and then killing these cells, according to a new research study.

Comprehensive genomic analysis offers insights into causes of Wilms tumor development

August 21, 2017
A comprehensive genomic analysis of Wilms tumor - the most common kidney cancer in children - found genetic mutations involving a large number of genes that fall into two major categories. These categories involve cellular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.