A new target for diabetes treatment

November 25, 2013
A new target for diabetes treatment
ASU synthetic biologist Karmella Haynes is participating in a national research project to help battle diabetes. Her role involves developing advanced ways of revealing fundamental factors that determine the health of the body’s cells. Credit: Jessica Hochreiter/ASU

In her synthetic biology lab, Karmella Haynes focuses much of her effort on developing better ways of exploring how human body cells work – or don't work like they should. She'll be applying her expertise in that area to a major new research endeavor to produce more effective treatments for diabetes.

The project is being undertaken by the national Synthetic Biology Engineering Research Center (SynBERC), which is supported by the National Science Foundation (NSF). SynBERC members include the Massachusetts Institute of Technology (MIT), Harvard Medical School and Stanford University.

Haynes became an affiliate researcher for the center as a result of the research she conducted at Harvard before joining Arizona State University, where she is an assistant professor in the School of Biological and Health Systems Engineering, one of ASU's Ira A. Fulton Schools of Engineering.

The NSF recently awarded her an $81,000 grant to support her role in the project. She will seek to develop more advanced synthetic monitors to track the development and health conditions of body cells.

In this case, Haynes will zero in on pancreatic islets cells – tiny clumps of cells in the pancreas that produce glucagon and insulin, which helps the body burn sugar and maintain blood sugar levels.

"When something goes wrong within these clumps of cells, you develop diseases such as diabetes," she explains.

Diabetes is a major disabling and deadly disease that is projected to afflict about 300 million people by 2025, according to the World Health Organization.

Glucagon is a peptide hormone that the pancreas secretes. It raises – the opposite of the function of insulin, which lowers blood glucose levels.

Haynes will grow pancreatic cells that produce glucagon and insulin in an artificial culture (outside the body), enabling her to study the effects of particular synthetic proteins and DNA on those cells.

In the past, such cell cultures have been grown on flat surfaces. Haynes will collaborate with labs at MIT to grow and study the cells in a three-dimensional translucent biomaterial.

Being able to make observations from a three-dimensional view "gives us a much more holistic view of how treatments affect the pancreatic islet tissue, and of ways we can genetically manipulate cells so a disease can be treated effectively," she explains. "We can gain a deeper understanding of the proper growth process of that small mass of pancreatic cells that is critical in preventing development of diabetes."

The cells themselves will be implanted with synthetic monitors capable of tracking changes in the chromosomal structure of the cells. That will give Haynes a precise look at various stages of cell development.

She will be designing the synthetic proteins that act as monitors, revealing "the molecular changes that occur in the cells as they grow" and allowing her "to manipulate the states of the cells to maintain healthy pancreatic tissue."

The DNA-based monitoring device signals what it finds by glowing – enabled by the use of a genetically encoded fluorescent protein that the monitor can produce.

"We can engineer the DNA-based monitor so that when the chromosome structure of the cells changes, the monitor is tripped and starts producing a green fluorescent protein," Haynes explains. "Certain changes in chromosome structure can promote cell viability or cause cell death."

The process enables close tracking of the condition of the coiled material in the chromosomal structure of . If the coils become too loose or too condensed, they can interfere with insulin production or other proper functions of the pancreas.

Haynes' says one of her project's goals is "revealing the physics underlying the coiling and uncoiling of these strands of DNA" and using that knowledge to "design small proteins that go into cells and actually control the coiling and uncoiling of DNA so that the pancreas islets have plenty of that are producing proper levels of insulin."

A portion of her NSF grant will support students in getting hands-on lab experience. One undergraduate and one graduate student will be part of Haynes' SynBERC project research team.

Explore further: New 3-D method used to grow miniature pancreas

Related Stories

New 3-D method used to grow miniature pancreas

October 15, 2013
An international team of researchers from the University of Copenhagen have successfully developed an innovative 3D method to grow miniature pancreas from progenitor cells. The future goal is to use this model to help in ...

Reading the pancreas through the eye: Researchers describe innovative way to study body glucose regulation

November 18, 2013
Researchers at Karolinska Institutet in Sweden have found an innovative way to study glucose regulation in the body: by transferring the vital insulin-producing cells from the pancreas to the eye, the latter can serve as ...

Pancreatic stem cells isolated from mice

September 17, 2013
Scientists have succeeded in growing stem cells that have the ability to develop into two different types of cells that make up a healthy pancreas. The research team led by Dr. Hans Clevers of the Hubrecht Institute, The ...

Cell study offers more diabetic patients chance of transplant

August 29, 2013
Diabetic patients could benefit from a breakthrough that enables scientists to take cells from the pancreas and change their function to produce insulin.

Researchers discover protein that may represent new target for treating type 1 diabetes

January 4, 2012
Researchers at Wake Forest Baptist Medical Center's Institute for Regenerative Medicine and colleagues have discovered a new protein that may play a critical role in how the human body regulates blood sugar levels. Reporting ...

Brain may play key role in blood sugar metabolism and development of diabetes

November 6, 2013
A growing body of evidence suggests that the brain plays a key role in glucose regulation and the development of type 2 diabetes, researchers write in the Nov. 7 issue of the journal Nature. If the hypothesis is correct, ...

Recommended for you

Scientists discover a new way to treat type 2 diabetes

July 21, 2017
Medication currently being used to treat obesity is also proving to have significant health benefits for patients with type 2 diabetes. A new study published today in Molecular Metabolism explains how this therapeutic benefit ...

Alzheimer's drug cuts hallmark inflammation related to metabolic syndrome by 25 percent

July 20, 2017
An existing Alzheimer's medication slashes inflammation and insulin resistance in patients with metabolic syndrome, a potential therapeutic intervention for a highly dangerous condition affecting 30 percent of adults in the ...

Diabetes or its precursor affects 100 million Americans

July 19, 2017
Almost one-third of the US population—100 million people—either has diabetes or its precursor condition, known as pre-diabetes, said a government report Tuesday.

One virus may protect against type 1 diabetes, others may increase risk

July 11, 2017
Doctors can't predict who will develop type 1 diabetes, a chronic autoimmune disease in which the immune system destroys the cells needed to control blood-sugar levels, requiring daily insulin injections and continual monitoring.

Diabetes complications are a risk factor for repeat hospitalizations, study shows

July 7, 2017
For patients with diabetes, one reason for hospitalization and unplanned hospital readmission is severe dysglycemia (uncontrolled hyperglycemia - high blood sugar, or hypoglycemia - low blood sugar), says new research published ...

Researchers identify promising target to protect bone in patients with diabetes

July 7, 2017
Utilizing metabolomics research techniques, NYU Dentistry researchers investigated the underlying biochemical activity and signaling within the bone marrow of hyperglycemic mice with hopes of reducing fracture risks of diabetics

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.