'Bio pen' allows surgeons to design customised implants

December 5, 2013, University of Wollongong
A handheld bio pen developed in the labs of the University of Wollongong will allow surgeons to design customised implants during surgery.

A handheld 'bio pen' developed in the labs of the University of Wollongong (UOW) will allow surgeons to design customised implants on-site and at the time of surgery.

The BioPen, developed by researchers from the UOW-headquartered Australian Research Council Centre of Excellence for Electromaterials Science (ACES), will give surgeons greater control over where the materials are deposited while also reducing the time the patient is in surgery by delivering and directly to the site of injury, accelerating the regeneration of functional bone and cartilage.

The BioPen works similar to 3D printing methods by delivering cell material inside a biopolymer such as alginate, a seaweed extract, protected by a second, outer layer of gel material. The two layers of gel are combined in the pen head as it is extruded onto the bone surface and the surgeon 'draws' with the ink to fill in the damaged bone section.

A low powered ultra-violet light source is fixed to the device that solidifies the inks during dispensing, providing protection for the embedded cells while they are built up layer-by-layer to construct a 3D scaffold in the wound site.

Once the cells are 'drawn' onto the surgery site they will multiply, become differentiated into nerve cells, muscle cells or and will eventually turn from individual cells into a thriving community of cells in the form of a functioning a tissue, such as nerves, or a muscle.

UOW’s Professor Gordon Wallace and his team at the Australian Research Council Centre of Excellence for Electromaterials Science developed the device.

The device can also be seeded with growth factors or other drugs to assist regrowth and recovery, while the hand-held design allows for precision in theatre and ease of transportation.

The BioPen prototype was designed and built using the 3D printing equipment in the labs at the University of Wollongong and was this week handed over to clinical partners at St Vincent's Hospital Melbourne, led by Professor Peter Choong, who will work on optimising the cell material for use in clinical trials.

The BioPen will help build on recent work by ACES researchers where they were able to grow new knee cartilage from on 3D-printed scaffolds to treat cancers, osteoarthritis and traumatic injury.

Professor Peter Choong, Director of Orthopaedics at St Vincent's Hospital Melbourne and the Sir Hugh Devine Professor of Surgery, University of Melbourne said:

"This type of treatment may be suitable for repairing acutely damaged bone and cartilage, for example from sporting or motor vehicle injuries. Professor Wallace's research team brings together the science of stem and polymer chemistry to help surgeons design and personalise solutions for reconstructing bone and joint defects in real time."

The BioPen will be transferred to St Vincent's for clinical projects to be carried out at the proposed Aikenhead Centre for Medical Discovery in Melbourne.

"The combination of materials science and next-generation fabrication technology is creating opportunities that can only be executed through effective collaborations such as this," ACES Director Professor Gordon Wallace said.

"What's more, advances in 3D printing are enabling further hardware innovations in a rapid manner."

Explore further: Scientists 'grow' new cartilage with help of 3-D printing technology

Related Stories

Scientists 'grow' new cartilage with help of 3-D printing technology

August 8, 2013
A partnership between scientists at the University of Wollongong and St Vincent's Hospital Melbourne has led to a breakthrough in tissue engineering, with researchers growing cartilage from stem cells to treat cancers, osteoarthritis ...

Can we use 3-D printing and stem cells to build a bone?

July 3, 2013
Pioneering techniques aiming to recreate human bone for replacement and repair will be showcased at the Royal Society's annual Summer Science Exhibition which opens to the public today.

Cartilage repair: Effects of weight bearing rehabilitation after microfracture surgery studied

February 26, 2013
In the body, bones are padded with a smooth cartilage layer at the ends, allowing smooth motion where two bones meet and form a joint. When cartilage around the bone becomes degenerated or lost due to osteoarthritis or traumatic ...

Successful repair of bone defects using a novel tissue engineered bone graft

December 4, 2013
Researchers at the Department of Orthopaedics, of the Second Affiliated Hospital of Xi'an Jiaotong University Health Science Center, led by Dr. Kunzheng Wang and Dr. Pei Yang have developed a novel biomimetic tissue engineered ...

Recommended for you

Drug may help surgical patients stop opioids sooner

December 13, 2017
(HealthDay)—Opioid painkillers after surgery can be the first step toward addiction for some patients. But a common drug might cut the amount of narcotics that patients need, a new study finds.

Children best placed to explain facts of surgery to patients, say experts

December 13, 2017
Getting children to design patient information leaflets may improve patient understanding before they have surgery, finds an article in the Christmas issue of The BMJ.

Burn victim saved by skin grafts from identical twin (Update)

November 23, 2017
A man doomed to die after suffering burns across 95 percent of his body was saved by skin transplants from his identical twin in a world-first operation, French doctors said Thursday.

Is a common shoulder surgery useless?

November 21, 2017
(HealthDay)—New research casts doubt on the true effectiveness of a common type of surgery used to ease shoulder pain.

Study shows electric bandages can fight biofilm infection, antimicrobial resistance

November 6, 2017
Researchers at The Ohio State University Wexner Medical Center have shown - for the first time - that special bandages using weak electric fields to disrupt bacterial biofilm infection can prevent infections, combat antibiotic ...

Obesity increases incidence, severity, costs of knee dislocations

November 3, 2017
A new study of more than 19,000 knee dislocation cases in the U.S. between 2000 and 2012 provides a painful indication of how the nation's obesity epidemic is changing the risk, severity and cost of a traumatic injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.