New discovery on how skin cells form 'bridges' paves the way for advances in wound healing

December 13, 2013

A team of researchers from the National University of Singapore (NUS) have discovered that outer skin cells are able to unite to form suspended "bridges" during wound healing. The new findings will pave the way for tissue engineering, such as the design of artificial skin, and better wound treatment.

Led by Professor Lim Chwee Teck from the Mechanobiology Institute (MBI) at NUS and Departments of Biomedical Engineering and Mechanical Engineering at the NUS Faculty of Engineering, and Professor Benoit Ladoux from MBI and Institut Jacques Monod, the scientists discovered how can migrate over regions devoid of support from the , which are structural proteins that allow cells to adhere to. These research findings were first published online in the leading scientific journal Nature Materials on 2 December 2013.

How human outer skin cells form suspended multicellular "bridges"

Using microfabricated technology, the team found that layers of human cells, known as keratinocytes, are able to form suspended multicellular "bridges" over regions devoid of extracellular matrix support. Migrating keratinocytes are able to move forward as a united and homogenous collection of cells to form a protective barrier over a wounded area. Eventually, these cells come together to form suspended "bridges" over regions which are not conducive for cell adhesion. It was previously not understood how this healing process, known as "re-epithelialization", could occur over a wound bed that did not provide a homogeneous coating of extracellular matrix for cells to migrate on.

The researchers also found out that the suspended cell sheet is created through the build-up of large-scale tension activated by acto-myosin, a kind of motor protein that can cause contraction in cells. They found the cell sheet to be elastic-like in behavior, which partly explained its ability to form multicellular bridges. This is not seen in other cell types which tend to be more fluid-like.

Next steps in tissue mechanobiology research

Commenting on their study, Prof Lim said, "We need to conduct an in-depth study of the various factors regulating so that we can better understand the process of tissue repair and regeneration. Our study will hopefully pave the way for designing better alternatives that can overcome the current limitations in the field of skin and promote satisfactory skin regeneration. Some potential applications include treating skin burn wounds as well as characterising the mechanical properties of cell sheets."

Moving forward, the team will continue to push the boundary of tissue mechanobiology research by investigating the physical and mechanical properties of skin cells. This research will enable scientists to have a better understanding of the changes associated with certain skin diseases such as blistering diseases and those that occur during the course of ageing.

Explore further: Mechanisms of wound healing are clarified in zebrafish study

Related Stories

Mechanisms of wound healing are clarified in zebrafish study

October 29, 2013
A crucial component of wound healing in many animals, including humans, is the migration of nearby skin cells toward the center of the wound. These cells fill the wound in and help prevent infection while new skin cells regenerate.

Skin's own cells offer hope for new ways to repair wounds, reduce impact of aging on the skin

December 11, 2013
Scientists at King's College London have, for the first time, identified the unique properties of two different types of cells, known as fibroblasts, in the skin – one required for hair growth and the other responsible ...

Too much of a good thing? Too many 'healing' cells delays wound healing

July 1, 2013
Like most other things, you can have too much of a good thing when it comes to wound healing, and new research proves it. According to an article published in the July 2013 issue of the Journal of Leukocyte Biology, wound ...

Important wound-healing process discovered

September 26, 2013
Scientists at The Scripps Research Institute (TSRI) have discovered an important process by which special immune cells in the skin help heal wounds. They found that these skin-resident immune cells function as "first responders" ...

Study identifies molecule critical to healing wounds

November 15, 2013
Skin provides a first line of defense against viruses, bacteria and parasites that might otherwise make people ill. When an injury breaks that barrier, a systematic chain of molecular signaling launches to close the wound ...

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.