Gene found to be crucial for formation of certain brain circuitry

December 5, 2013, Johns Hopkins University School of Medicine
This is a mouse neuron with synapses shown: Red dots mark excitatory synapses, while green dots mark so-called inhibitory synapses. Credit: Kamal Sharma/Johns Hopkins University School of Medicine

Using a powerful gene-hunting technique for the first time in mammalian brain cells, researchers at Johns Hopkins report they have identified a gene involved in building the circuitry that relays signals through the brain. The gene is a likely player in the aging process in the brain, the researchers say. Additionally, in demonstrating the usefulness of the new method, the discovery paves the way for faster progress toward identifying genes involved in complex mental illnesses such as autism and schizophrenia—as well as potential drugs for such conditions. A summary of the study appears in the Dec. 12 issue of Cell Reports.

"We have been looking for a way to sift through large numbers of at the same time to see whether they affect processes we're interested in," says Richard Huganir, Ph.D., director of the Johns Hopkins University Solomon H. Snyder Department of Neuroscience and a Howard Hughes Medical Institute investigator, who led the study. "By adapting an automated process to neurons, we were able to go through 800 genes to find one needed for forming synapses—connections—among those ."

Although automated gene-sifting techniques have been used in other areas of biology, Huganir notes, many neuroscience studies instead build on existing knowledge to form a hypothesis about an individual gene's role in the brain. Traditionally, researchers then disable or "knock out" the gene in lab-grown cells or animals to test their hypothesis, a time-consuming and laborious process.

In this study, Huganir's group worked to test many genes all at once using plastic plates with dozens of small wells. A robot was used to add precise allotments of cells and nutrients to each well, along with molecules designed to knock out one of the cells' genes—a different one for each well.

"The big challenge was getting the neurons, which are very sensitive, to function under these automated conditions," says Kamal Sharma, Ph.D., a research associate in Huganir's group. The team used a trial-and-error approach, adjusting how often the nutrient solution was changed and adding a washing step, and eventually coaxed the cells to thrive in the wells. In addition, Sharma says, they fine-tuned an automated microscope used to take pictures of the circuitry that had formed in the wells and calculated the numbers of synapses formed among the cells.

The team screened 800 genes in this way and found big differences in the well of cells with a gene called LRP6 knocked out. LRP6 had previously been identified as a player in a biochemical chain of events known as the Wnt pathway, which controls a range of processes in the brain. Interestingly, Sharma says, the team found that LRP6 was only found on a specific kind of synapse known as an excitatory synapse, suggesting that it enables the Wnt pathway to tailor its effects to just one synapse type.

"Changes in are associated with aging, and changes in the Wnt pathway in later life may accelerate aging in general. However, we do not know what changes take place in the synaptic landscape of the aging brain. Our findings raise intriguing questions: Is the Wnt pathway changing that landscape, and if so, how?" says Sharma. "We're interested in learning more about what other proteins LRP6 interacts with, as well as how it acts in different types of at different developmental stages of circuit development and refinement."

Another likely outcome of the study is wider use of the gene-sifting technique, he says, to explore the genetics of complex mental illnesses. The automated method could also be used to easily test the effects on brain cells of a range of molecules and see which might be drug candidates.

Explore further: Genetic pathway to speech and language? Gene found to foster synapse formation in the brain

Related Stories

Genetic pathway to speech and language? Gene found to foster synapse formation in the brain

October 31, 2013
Researchers at Johns Hopkins say they have found that a gene already implicated in human speech disorders and epilepsy is also needed for vocalizations and synapse formation in mice. The finding, they say, adds to scientific ...

Newly discovered 'switch' plays dual role in memory formation

August 13, 2013
Researchers at Johns Hopkins have uncovered a protein switch that can either increase or decrease memory-building activity in brain cells, depending on the signals it detects. Its dual role means the protein is key to understanding ...

SIGNAL found to enhance survival of new brain cells

November 11, 2013
A specialized type of brain cell that tamps down stem cell activity ironically, perhaps, encourages the survival of the stem cells' progeny, Johns Hopkins researchers report. Understanding how these new brain cells "decide" ...

Genes involved in birth defects may also lead to mental illness

June 24, 2013
Gene mutations that cause cell signaling networks to go awry during embryonic development and lead to major birth defects may also cause subtle disruptions in the brain that contribute to psychiatric disorders such as schizophrenia, ...

Critical gene in retinal development and motion sensing identified (w/ Video)

October 31, 2013
Our vision depends on exquisitely organized layers of cells within the eye's retina, each with a distinct role in perception. Johns Hopkins researchers say they have taken an important step toward understanding how those ...

Building the best brain: Researchers show how brain cell connections get cemented early in life

September 20, 2013
When we're born, our brains aren't very organized. Every brain cell talks to lots of other nearby cells, sending and receiving signals across connections called synapses.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.