Building the best brain: Researchers show how brain cell connections get cemented early in life

September 20, 2013, University of Michigan Health System
Two neighboring brain cells "talk" to one another by sending signals across a gap called a synapse. The more active the synapse during development, U-M researchers found, the more a protein called SIRP-alpha is cut loose from one cell, travels to the other, and helps stabilize the synapse for the future. Credit: Umemori Lab, University of Michigan

When we're born, our brains aren't very organized. Every brain cell talks to lots of other nearby cells, sending and receiving signals across connections called synapses.

But as we grow and learn, things get a bit more stable. The pathways that will serve us our whole lives start to organize, and less-active, inefficient shut down.

But why and how does this happen? And what happens when it doesn't go normally? New research from the University of Michigan Medical School may help explain.

In a new paper in Nature Neuroscience, a team of U-M reports important findings about how called neurons keep their most active connections with other cells, while letting other synapses lapse.

Specifically, they show that SIRP alpha, a protein found on the surface of various cells throughout the body, appears to play a key role in the process of cementing the most active between brain cells. The research, done in mouse brains, was funded by the National Institutes of Health and several foundations.

The findings boost understanding of basic —and may aid research on conditions like autism, schizophrenia, epilepsy and , all of which have some basis in abnormal synapse function.

"For the brain to be really functional, we need to keep the most active and most efficient connections," says senior author Hisashi Umemori, M.D., Ph.D., a research assistant professor at U-M's Molecular and Behavioral Neuroscience Institute and assistant professor of in the Medical School. "So, during development it's crucial to establish efficient connections, and to eliminate inactive ones. We have identified a key that the brain uses to stabilize and maturate the most active connections."

Umemori says the new findings on SIRP alpha grew directly out of previous work on competition between neurons, which enables the most active ones to become part of pathways and circuits.

The team suspected that there must be some sort of signal between the two cells on either side of each synapse—something that causes the most active synapses to stabilize. So they set out to find out what it was.

SIRP-rise findings

The group had previously shown that SIRP-alpha was involved in some way in a neuron's ability to form a presynaptic nerve terminal—an extension of the cell that reaches out toward a neighboring cell, and can send the chemical signals that brain cells use to talk to one another.

SIRP-alpha is also already known to serve an important function in the rest of the body—essentially, helping normal cells tell the immune system not to attack them. It may also help cancer cells evade detection by the immune system's watchdogs.

In the new study, the team studied SIRP alpha function in the brain—and started to understand its role in synapse stabilization. They focused on the hippocampus, a region of the brain very important to learning and memory.

Through a range of experiments, they showed that when a brain cell receives signals from a neighboring cell across a synapse, it actually releases SIRP-alpha into the space between the cells. It does this through the action of molecules inside the cell—called CaMK and MMP—that act like molecular scissors, cutting a SIRP-alpha protein in half so that it can float freely away from the cell.

The part of the SIRP-alpha protein that floats into the synapse "gap" latches on to a receptor on the other side, called a CD47 receptor. This binding, in turn, appears to tell the cell that the signal it sent earlier was indeed received—and that the synapse is a good one. So, the cell brings more chemical signaling molecules down that way, and releases them into the synapse.

As more and more nerve messages travel between the "sending" and "receiving" cells on either side of that synapse, more SIRP-alpha gets cleaved, released into the synapse, and bound to CD47.

The researchers believe this repeated process is what helps the cells determine which synapses to keep—and which to let wither.

Umemori says the team next wants to look at what happens when SIRP-alpha doesn't get cleaved as it should—and at what's happening in when a synapse gets eliminated.

"This step of shedding SIRP-alpha must be critical to developing a functional neural network," he says. "And if it's not done well, disease or disorders may result. Perhaps we can use this knowledge to treat diseases caused by defects in synapse formation."

He notes that the gene for the CD47 receptor is found in the same general area of our DNA as several genes that are suspected to be involved in schizophrenia.

Explore further: Brain dysfunctions: Shared mechanisms in fragile X syndrome, autism and schizophrenia

More information: Nature Neuroscience, Advance Online Publication, DOI: 10.1038/nn.3516

Related Stories

Brain dysfunctions: Shared mechanisms in fragile X syndrome, autism and schizophrenia

September 18, 2013
Several psychiatric conditions such as schizophrenia, autism and intellectual disabilities share the same brain cell abnormalities: the contacts (synapses) between brain cells are poorly developed and not functional. Claudia ...

New regulator discovered for information transfer in the brain

June 20, 2013
The protein mSYD1 has a key function in transmitting information between neurons. This was recently discovered by the research group of Prof Peter Scheiffele at the Biozentrum, University of Basel. The findings of the investigations ...

Newly discovered 'switch' plays dual role in memory formation

August 13, 2013
Researchers at Johns Hopkins have uncovered a protein switch that can either increase or decrease memory-building activity in brain cells, depending on the signals it detects. Its dual role means the protein is key to understanding ...

Competition between brain cells spurs memory circuit development

June 23, 2011
Scientists at the University of Michigan Health System have for the first time demonstrated how memory circuits in the brain refine themselves in a living organism through two distinct types of competition between cells.

Protein family linked to autism suppresses the development of inhibitory synapses

January 28, 2013
Synapse development is promoted by a variety of cell adhesion molecules that connect neurons and organize synaptic proteins. Many of these adhesion molecules are linked to neurodevelopmental disorders; mutations in neuroligin ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

beleg
3 / 5 (2) Sep 20, 2013
When we're born, our brains aren't very organized. Every brain cell talks to lots of other nearby cells, sending and receiving signals across connections called synapses.

But as we grow and learn, things get a bit more stable. The brain pathways that will serve us our whole lives start to organize, and less-active, inefficient synapses shut down.

Instead of "when we're born..." ...use "during gestation".

The "talk" is theatrically known as 'dress rehearsal'.
The first (internal cell) 'dialogue' is stem (embryonic) cell division.
SIRP-alpha proteins appear during gestation.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.