Building the best brain: Researchers show how brain cell connections get cemented early in life

September 20, 2013, University of Michigan Health System
Two neighboring brain cells "talk" to one another by sending signals across a gap called a synapse. The more active the synapse during development, U-M researchers found, the more a protein called SIRP-alpha is cut loose from one cell, travels to the other, and helps stabilize the synapse for the future. Credit: Umemori Lab, University of Michigan

When we're born, our brains aren't very organized. Every brain cell talks to lots of other nearby cells, sending and receiving signals across connections called synapses.

But as we grow and learn, things get a bit more stable. The pathways that will serve us our whole lives start to organize, and less-active, inefficient shut down.

But why and how does this happen? And what happens when it doesn't go normally? New research from the University of Michigan Medical School may help explain.

In a new paper in Nature Neuroscience, a team of U-M reports important findings about how called neurons keep their most active connections with other cells, while letting other synapses lapse.

Specifically, they show that SIRP alpha, a protein found on the surface of various cells throughout the body, appears to play a key role in the process of cementing the most active between brain cells. The research, done in mouse brains, was funded by the National Institutes of Health and several foundations.

The findings boost understanding of basic —and may aid research on conditions like autism, schizophrenia, epilepsy and , all of which have some basis in abnormal synapse function.

"For the brain to be really functional, we need to keep the most active and most efficient connections," says senior author Hisashi Umemori, M.D., Ph.D., a research assistant professor at U-M's Molecular and Behavioral Neuroscience Institute and assistant professor of in the Medical School. "So, during development it's crucial to establish efficient connections, and to eliminate inactive ones. We have identified a key that the brain uses to stabilize and maturate the most active connections."

Umemori says the new findings on SIRP alpha grew directly out of previous work on competition between neurons, which enables the most active ones to become part of pathways and circuits.

The team suspected that there must be some sort of signal between the two cells on either side of each synapse—something that causes the most active synapses to stabilize. So they set out to find out what it was.

SIRP-rise findings

The group had previously shown that SIRP-alpha was involved in some way in a neuron's ability to form a presynaptic nerve terminal—an extension of the cell that reaches out toward a neighboring cell, and can send the chemical signals that brain cells use to talk to one another.

SIRP-alpha is also already known to serve an important function in the rest of the body—essentially, helping normal cells tell the immune system not to attack them. It may also help cancer cells evade detection by the immune system's watchdogs.

In the new study, the team studied SIRP alpha function in the brain—and started to understand its role in synapse stabilization. They focused on the hippocampus, a region of the brain very important to learning and memory.

Through a range of experiments, they showed that when a brain cell receives signals from a neighboring cell across a synapse, it actually releases SIRP-alpha into the space between the cells. It does this through the action of molecules inside the cell—called CaMK and MMP—that act like molecular scissors, cutting a SIRP-alpha protein in half so that it can float freely away from the cell.

The part of the SIRP-alpha protein that floats into the synapse "gap" latches on to a receptor on the other side, called a CD47 receptor. This binding, in turn, appears to tell the cell that the signal it sent earlier was indeed received—and that the synapse is a good one. So, the cell brings more chemical signaling molecules down that way, and releases them into the synapse.

As more and more nerve messages travel between the "sending" and "receiving" cells on either side of that synapse, more SIRP-alpha gets cleaved, released into the synapse, and bound to CD47.

The researchers believe this repeated process is what helps the cells determine which synapses to keep—and which to let wither.

Umemori says the team next wants to look at what happens when SIRP-alpha doesn't get cleaved as it should—and at what's happening in when a synapse gets eliminated.

"This step of shedding SIRP-alpha must be critical to developing a functional neural network," he says. "And if it's not done well, disease or disorders may result. Perhaps we can use this knowledge to treat diseases caused by defects in synapse formation."

He notes that the gene for the CD47 receptor is found in the same general area of our DNA as several genes that are suspected to be involved in schizophrenia.

Explore further: Brain dysfunctions: Shared mechanisms in fragile X syndrome, autism and schizophrenia

More information: Nature Neuroscience, Advance Online Publication, DOI: 10.1038/nn.3516

Related Stories

Brain dysfunctions: Shared mechanisms in fragile X syndrome, autism and schizophrenia

September 18, 2013
Several psychiatric conditions such as schizophrenia, autism and intellectual disabilities share the same brain cell abnormalities: the contacts (synapses) between brain cells are poorly developed and not functional. Claudia ...

New regulator discovered for information transfer in the brain

June 20, 2013
The protein mSYD1 has a key function in transmitting information between neurons. This was recently discovered by the research group of Prof Peter Scheiffele at the Biozentrum, University of Basel. The findings of the investigations ...

Newly discovered 'switch' plays dual role in memory formation

August 13, 2013
Researchers at Johns Hopkins have uncovered a protein switch that can either increase or decrease memory-building activity in brain cells, depending on the signals it detects. Its dual role means the protein is key to understanding ...

Competition between brain cells spurs memory circuit development

June 23, 2011
Scientists at the University of Michigan Health System have for the first time demonstrated how memory circuits in the brain refine themselves in a living organism through two distinct types of competition between cells.

New model synapse could shed light on disorders such as epilepsy and anxiety

August 8, 2012
(Phys.org) -- A new way to study the role of a critical neurotransmitter in disorders such as epilepsy, anxiety, insomnia, depression, schizophrenia, and alcohol addiction has been developed by a group of scientists led by ...

Protein family linked to autism suppresses the development of inhibitory synapses

January 28, 2013
Synapse development is promoted by a variety of cell adhesion molecules that connect neurons and organize synaptic proteins. Many of these adhesion molecules are linked to neurodevelopmental disorders; mutations in neuroligin ...

Recommended for you

Newborn babies' brain responses to being touched on the face measured for the first time

November 16, 2018
A newborn baby's brain responds to being touched on the face, according to new research co-led by UCL.

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

New brain imaging research shows that when we expect something to hurt it does, even if the stimulus isn't so painful

November 14, 2018
Expect a shot to hurt and it probably will, even if the needle poke isn't really so painful. Brace for a second shot and you'll likely flinch again, even though—second time around—you should know better.

A 15-minute scan could help diagnose brain damage in newborns

November 14, 2018
A 15-minute scan could help diagnose brain damage in babies up to two years earlier than current methods.

New clues to the origin and progression of multiple sclerosis

November 13, 2018
Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease. The ...

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.