Single microRNA powers motor activity

December 5, 2013, The Mount Sinai Hospital
Sagital brain section of a miR-128 deficient mouse. Immunostaining shows normal striatal neurons and their projections to the substantia nigra (green fluorescent protein shown in green) in wild-type and miR-128 deficient mice. Credit: Anne Schaefer

New research from the Icahn School of Medicine at Mount Sinai shows that microRNA-128 is one of the strongest regulators of nerve cell excitability and motor activity, and that it does so by adjusting an entire neuronal signaling pathway. Published online Dec. 6 in the journal Science, the preclinical study suggests that developing new drugs for treatment-refractory epilepsy that target the microRNA signaling pathway might prove beneficial for patients with severe epilepsy, including the epilepsy of infancy. MicroRNAs are non-coding RNAs that regulate the translation or degradation of messenger RNA, the essential building blocks for proteins in the cell.

Anne Schaefer, MD, PhD, Assistant Professor, Seaver Fellow, and recipient of the NIH Director's New Innovator Award 2012 Friedman Brain Institute, Departments of Neuroscience and Psychiatry, at the Icahn School of Medicine at Mount Sinai, and the study's senior author, said that the findings are extremely compelling. "This is the first time that it has been shown that a single microRNA could control complex functions in the adult brain."

The investigators revealed that the expression of a single microRNA, microRNA-128, defined motor activity and exploration in mice. When miR-128 expression was reduced in adult neurons, it led to a dose-dependent increase in motor activity and fatal . Overexpression of the miRNA lessens neuronal responsiveness and seizure susceptibility, reduces motor activity, and reduces motor difficulties associated with Parkinson's like disease.

Mount Sinai Innovation Partners is managing the intellectual property for the use of microRNA-128 as a potential treatment for severe and treatment-refractory epilepsy and exploring commercial opportunities for this technology.

Explore further: Study shows marijuana's potential for treating autoimmune disorders

More information: Single Neuron Seeks Just the Right Amount of One MicroRNA,

Related Stories

Study shows marijuana's potential for treating autoimmune disorders

November 25, 2013
A new study from researchers at the University of South Carolina provides evidence that THC (tetrahydrocannabinol), a principal ingredient in marijuana, may be beneficial in treating those with autoimmune disorders.

Tiny antisense molecules increase 'good cholesterol' levels in obese primates

November 20, 2013
A strategy developed by Massachusetts General Hospital (MGH)-based investigators to increase levels of beneficial high-density lipoprotein (HDL) has been shown for the first time to be effective in non-human primates. The ...

MicroRNA molecule found to be a potent tumor-suppressor in lung cancer

September 16, 2013
New research shows that microRNA-486 is a potent tumor-suppressor molecule in lung cancer, and that the it helps regulate the proliferation and migration of lung-cancer cells, and the induction of programmed cell death, or ...

MicroRNA cooperation mutes breast cancer oncogenes

May 7, 2013
A University of Colorado Cancer Center study recently published in the journal Cell Death & Disease shows that turning up a few microRNAs a little may offer as much anti-breast-cancer activity as turning up one microRNA a ...

Age-related cognitive decline linked to energy in synapses in prefrontal cortex

December 2, 2013
Age-related cognitive decline and changes in the nervous system are closely linked, but up until recently, they were thought to result from the loss of neurons in areas such as the prefrontal cortex, the part of the brain ...

A boost in microRNA may protect against sepsis and other inflammatory diseases

May 24, 2012
Acute inflammatory diseases, such as sepsis, as well as chronic inflammatory diseases like diabetes and arthritis, develop as a result of sustained inflammation of the blood vessel wall. Researchers at Brigham and Women's ...

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.