Autophagy predicts which cancer cells live and die when faced with anti-cancer drugs

January 10, 2014 by Garth Sundem
In the process of autophagy, cells reprocess or “eat” parts of themselves in order to survive times of energy scarcity or other challenges.

(Medical Xpress)—When a tumor is treated with an anti-cancer drug, some cells die and, unfortunately, some cells tend to live. A University of Colorado Cancer Center study published in the journal Nature Cell Biology details a possible difference between the susceptible and resistant cells: the rate at which cells are able to cleanse themselves via the process known as autophagy.

"In these studies, say we treat cells with the IC-50 of a drug - at that dose, 50 percent of cells should live and 50 percent of cells should die. But the fundamental question is why does cell A die whereas cell B lives? What we show is that the difference may be due to random variation in the amount of that's going on," says Andrew Thorburn, PhD, deputy director of the CU Cancer Center.

Previous studies show that autophagy promotes cell survival – under conditions of stress or shortage, cells break down non-necessary components to provide energy or use the same strategy to prevent cellular damage by degrading and recycling potentially damaging proteins. And so it seems logical that cancer cells with low autophagy would have high mortality when faced with anti-cancer drugs. However, the current study shows that rates of cell death may increase or decrease depending on levels of autophagy and the specific mechanism of the anti-cancer drug.

"We separated cancer cells into populations with low and high autophagy and then treated them with two drugs, both of which should activate death. Interestingly, when treated with the first drug, cells with high autophagy had the highest mortality. But then when treated with the second drug, cells with low autophagy had the highest mortality. Depending on the drug, the effect of autophagy was opposite," Thorburn says.

Specifically, Thorburn and colleagues including first author Jacob Gump, PhD, treated high- and low-autophagy cell populations with chemicals TRAIL and Fas ligand, which activate cells' death receptors. Cells treated with these chemicals are "told" to die and as the researchers expected, some cells in all populations underwent the programmed cell death known as apoptosis. However, cells with high autophagy were more sensitive to treatment with Fas ligand, whereas cells with low autophagy were more sensitive to TRAIL. Similar differences were seen across types of cancer cells - in some cancers, autophagy protects against these drugs and in others autophagy makes cells more susceptible.

While the work does not necessarily add to our understanding of how autophagy aids cell survival, the group showed how it creates in some tumors when confronted with some drugs: a protein known as FAP-1 is present in some but not all where it serves to decrease the ability of Fas ligand to kill the cells. Autophagy degrades this cell-survival protein and this, in turn, makes cells more susceptible to Fas ligand but only in the cells where FAP-1 is normally present.

"If similar variation occurs in other contexts, a cancer cell you're trying to kill could be more or less resistant to whatever you're using to try to kill it depending on its level of autophagy," Thorburn says. Additionally, Thorburn points out that cells in these lab studies tend to be homogenous in their levels of autophagy compared to in natural tumor environments. It is likely, he says, these laboratory results will be magnified in actual tumors, where levels of autophagy tend to vary more widely.

While Fas ligand and TRAIL agonists are used in the lab only at this time, Thorburn says the next step in this line of research is to perform similar experiments with drugs that could be used in people.

Explore further: Autophagy-addicted breast cancers killed by anti-malaria drug, chloroquine

More information: www.nature.com/ncb/journal/v16 … n1/full/ncb2886.html

Related Stories

Autophagy-addicted breast cancers killed by anti-malaria drug, chloroquine

April 8, 2013
The process of autophagy cleans cells – they wrap up the bad stuff and then dispose of it. And so it stands to reason that inhibiting autophagy would make cancer cells less able to cleanse themselves of chemotherapy and ...

Restarting stalled autophagy a potential approach to treating Niemann-Pick disease

January 9, 2014
(Medical Xpress)—Whitehead Institute researchers have determined that the lipid storage disorder Niemann-Pick type C1 (NPC1) disease is caused not only by defects in cholesterol processing but also in autophagy—a key ...

Improved effectiveness of chemotherapy for cancer

August 15, 2013
Cancer cells often develop defence mechanisms which enable them to survive chemotherapy. A group of researchers from the Institutes of Pharmacology and Pathology in Bern present new solutions for preventing the development ...

Renegades of cell biology: Why K-Ras gene mutations prove so deadly in cancer

December 19, 2013
Cells with a mutation in the gene called K-Ras—found in close to 30 percent of all cancers, but mostly those with worst prognosis, such as pancreatic cancer, colon cancer, and lung cancer—behave in ways that subvert the ...

Obesity suppresses cellular process critical to kidney health

October 5, 2013
Obesity increases a chronic kidney disease patient's risk of developing kidney failure.

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.