Brain on autopilot: How the architecture of the brain shapes its functioning

January 16, 2014
A daydreaming brain: the yellow areas depict the default mode network from three different perspectives; the colored fibers show the connections amongst each other and with the remainder of the brain. Credit: MPI for Human Development

The structure of the human brain is complex, reminiscent of a circuit diagram with countless connections. But what role does this architecture play in the functioning of the brain? To answer this question, researchers at the Max Planck Institute for Human Development in Berlin, in cooperation with colleagues at the Free University of Berlin and University Hospital Freiburg, have for the first time analysed 1.6 billion connections within the brain simultaneously. They found the highest agreement between structure and information flow in the "default mode network," which is responsible for inward-focused thinking such as daydreaming.

Everybody's been there: You're sitting at your desk, staring out the window, your thoughts wandering. Instead of getting on with what you're supposed to be doing, you start mentally planning your next holiday or find yourself lost in a thought or a memory. It's only later that you realize what has happened: Your brain has simply "changed channels"—and switched to autopilot.

For some time now, experts have been interested in the competition among different networks of the brain, which are able to suppress one another's activity. If one of these approximately 20 networks is active, the others remain more or less silent. So if you're thinking about your next holiday, it is almost impossible to follow the content of a text at the same time.

To find out how the of the brain impacts its functional networks, a team of researchers at the Max Planck Institute for Human Development in Berlin, in cooperation with colleagues at the Free University of Berlin and the University Hospital Freiburg, have analysed the connections between a total of 40,000 tiny areas of the brain. Using functional , they examined a total of 1.6 billion possible anatomical connections between these different regions in 19 participants aged between 21 and 31 years. The research team compared these connections with the brain signals actually generated by the nerve cells.

Their results showed the highest agreement between brain structure and brain function in areas forming part of the "", which is associated with daydreaming, imagination, and self-referential thought. "In comparison to other networks, the default mode network uses the most direct anatomical connections. We think that neuronal activity is automatically directed to level off at this network whenever there are no external influences on the brain," says Andreas Horn, lead author of the study and researcher in the Center for Adaptive Rationality at the Max Planck Institute for Human Development in Berlin.

Living up to its name, the default mode network seems to become active in the absence of external influences. In other words, the anatomical structure of the brain seems to have a built-in autopilot setting. It should not, however, be confused with an idle state. On the contrary, daydreaming, imagination, and self-referential thought are complex tasks for the brain.

"Our findings suggest that the structural architecture of the brain ensures that it automatically switches to something useful when it is not being used for other activities," says Andreas Horn. "But the brain only stays on autopilot until an external stimulus causes activity in another network, putting an end to the daydreaming. A buzzing fly, a loud bang in the distance, or focused concentration on a text, for example."

The researchers hope that their findings will contribute to a better understanding of brain functioning in healthy people, but also of neurodegenerative disorders such as Alzheimer's disease and psychiatric conditions such as schizophrenia. In follow-up studies, the research team will compare the structures of patients with neurological disorders with those of healthy controls.

Explore further: Brain structure shows who is most sensitive to pain

More information: Horn, A., et al. (2013) The structural-functional connectome and the default mode network of the human brain. NeuroImage. dx.doi.org/10.1016/j.neuroimage.2013.09.069

Related Stories

Brain structure shows who is most sensitive to pain

January 14, 2014
Everybody feels pain differently, and brain structure may hold the clue to these differences.

Scientists define brain network behind attention, daydreaming

November 20, 2013
Stanford neuroscientists have for the first time traced how three brain networks mediate the mind's internal focus and its processing of stimuli from the outside world.

Brain network decay detected in early Alzheimer's

August 19, 2013
In patients with early Alzheimer's disease, disruptions in brain networks emerge about the same time as chemical markers of the disease appear in the spinal fluid, researchers at Washington University School of Medicine in ...

Breakthrough on physical cause of vegetative state, other 'disorders of consciousness'

October 4, 2012
(Medical Xpress)—By exploring parts of the brain that trigger during periods of daydreaming and mind-wandering, neuroscientists from Western University have made a significant breakthrough in understanding what physically ...

Study finds altered brain connections in epilepsy patients

November 19, 2013
Patients with the most common form of focal epilepsy have widespread, abnormal connections in their brains that could provide clues toward diagnosis and treatment, according to a new study published online in the journal ...

Breakdown of neural networks could help doctors track, better understand spread of Alzheimer's in brain

September 18, 2012
(Medical Xpress)—Scientists at Washington University School of Medicine in St. Louis have taken one of the first detailed looks into how Alzheimer's disease disrupts coordination among several of the brain's networks. The ...

Recommended for you

'Selfish brain' wins out when competing with muscle power, study finds

October 20, 2017
Human brains are expensive - metabolically speaking. It takes lot of energy to run our sophisticated grey matter, and that comes at an evolutionary cost.

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

Brain takes seconds to switch modes during tasks

October 19, 2017
The brain rapidly switches between operational modes in response to tasks and what is replayed can predict how well a task will be completed, according to a new UCL study in rats.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.