Researchers discover exactly how calcium phosphate can coax stem cells to become bone-building cells

January 6, 2014
Image of three human mesenchymal stem cells. The ATP in the cells is glowing green. The phosphate from the biomaterial (calcium phosphate) that is taken up by the cells is used to make more ATP, which is traditionally the source of energy for the cells. In this case, however, ATP can be converted to adenosine which promotes the human mesenchymal stem cells to be turned into bone cells. Credit: UC San Diego Department of Bioengineering

With the help of biomimetic matrices, a research team led by bioengineers at the University of California, San Diego has discovered exactly how calcium phosphate can coax stem cells to become bone-building cells. This work is published in the Proceedings of the National Academy of Sciences the week of Jan. 6, 2014.

UC San Diego Jacobs School of Engineering professor Shyni Varghese and colleagues have traced a surprising pathway from these biomaterials to bone formation. Their findings will help them refine the design of biomaterials that encourage stem cells to give rise to new bone. The researchers say their study may also point out new targets for treating bone defects and bone metabolic disorders such as major fractures and osteoporosis.

The materials are built to mimic the body's own cellular niches, in which undifferentiated or "blank-slate" stem cells from bone marrow transform into specific bone-forming cells. "We knew for years that calcium phosphate-based materials promote osteogenic differentiation of stem cells, but none of us knew why," Varghese said.

"As engineers, we want to build something that is reproducible and consistent," she explained, "so we need to know how building factors contribute to this end."

The researchers found that when phosphate ions gradually dissolve from these materials, they are taken up by the stem cells and used for the production of ATP, a key metabolic molecule. An ATP metabolic product called adenosine then signals the stem cells to commit to becoming bone-forming cells.

Varghese said it was a surprise to her team that "the biomaterials were connected to . And we didn't know how these metabolic pathways could influence stem cells' commitment to bone formation."

While the PNAS findings only apply to bone building, Varghese and her students at UC San Diego are working on a variety of projects to understand how stem cells thrive and differentiate into a variety of cell types. With this information, they hope to design biomaterials that can be used to help transform into tissues that may someday replace diseased or degenerated , muscle, or blood vessels.

Stem cell research may seem like an unusual endeavor for engineers, but tissue construction and the development of biomaterials have become one more type of "building" in the engineering repertoire, Varghese said.

"But to me, what we do is use engineering principles to solve a biological problem, and by integrating many research disciplines from molecular biology to engineering to medicine," she added.

The first author of the PNAS paper, Yu-Ru V. Shih is a postdoctoral fellow in Varghese's research group, the Bio-inspired Materials and Stem Cell Engineering Group. He came to UC San Diego as part of the UST-UCSD International Center of Excellence in Advanced Bioengineering, sponsored by the Taiwan National Science Council I-RiCE Program. This initiative by the Institute of Engineering in Medicine (IEM) at UC San Diego is directed by UC San Diego bioengineering professor Shu Chien. During the course of this study, Shih collaborated with Chien and Oscar K. Lee of the department of orthopedics and traumatology at Taipei Veterans General Hospital.

"This research is a testimony to how international collaborations could provide unique opportunities to young researchers to tackle interdisciplinary questions relevant to medical sciences," Varghese said.

Explore further: Adult stem cells help build human blood vessels in engineered tissues

More information: "Calcium-Phosphate Bearing Matrices induce Osteogenic Differentiation of Stem Cells through Adenosine Signaling," by Yu-Ru V. Shih et al. www.pnas.org/cgi/doi/10.1073/pnas.1321717111

Related Stories

Adult stem cells help build human blood vessels in engineered tissues

October 14, 2013
(Medical Xpress)—Researchers at the University of Illinois at Chicago have identified a protein expressed by human bone marrow stem cells that guides and stimulates the formation of blood vessels.

Boning up: Researchers find home of best stem cells for bone marrow transplants

August 1, 2013
McMaster University researchers have revealed the location of human blood stem cells that may improve bone marrow transplants. The best stem cells are at the ends of the bone.

Therapy using stem cells, bone marrow cells, appears safe for patients with ischemic cardiomyopathy

November 18, 2013
Alan W. Heldman, M.D., of the University of Miami Miller School of Medicine, and colleagues conducted a study to examine the safety of transendocardial stem cell injection (TESI) with autologous mesenchymal stem cells and ...

Scientists find a groovy way to influence specialization of stem cells

December 18, 2013
Researchers at Queen Mary University of London have shown for the first time that the specialised role stem cells go on to perform is controlled by primary cilia –tiny hair-like structures protruding from a cell.

Recommended for you

Common antiseptic ingredients de-energize cells and impair hormone response

August 22, 2017
A new in-vitro study by University of California, Davis, researchers indicates that quaternary ammonium compounds, or "quats," used as antimicrobial agents in common household products inhibit mitochondria, the powerhouses ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.