Study demonstrates 'guided missile' strategy to kill hidden HIV

January 9, 2014
This is a scanning electron micrograph of HIV-1 virions budding from a cultured lymphocyte. Credit: CDC Public Image Library

Researchers at the UNC School of Medicine have deployed a potential new weapon against HIV – a combination therapy that targets HIV-infected cells that standard therapies cannot kill.

Using mouse models that have immune systems composed of , researchers led by J. Victor Garcia, PhD, found that an antibody combined with a bacterial toxin can penetrate HIV-infected cells and kill them even though standard antiretroviral therapy, also known as ART, had no effect. Killing these persistent, HIV-infected cells is a major impediment to curing patients of HIV.

"Our work provides evidence that HIV-infected cells can be tracked down and destroyed throughout the body," said Garcia, professor of medicine and senior author of the study published January 9 in the journal PloS Pathogens.

For people with HIV, ART is life-saving treatment that can reduce the amount of virus in the body to undetectable levels. But as soon as treatment is stopped, the virus begins to replicate again. This means that people with HIV must be on medications for life. For some people, therapies are not without serious side effects.

In patients on ART, the virus either remains dormant or it multiplies very slowly – it persists, hidden, even though a cocktail of drugs is aligned against it.

Garcia's findings advance the so-called "kick-and-kill" strategy for HIV eradication – if the persistent virus is exposed, it can be targeted and killed with a new therapy.

To attack persistent HIV-infected cells, Garcia and colleagues used humanized bone marrow/liver/thymus mice – or BLT mice – with entire immune systems composed of human cells. This allows his team to study the distribution of persistent HIV-infected cells throughout the body and test strategies to eliminate those cells.

For the PloS Pathogens study, the researchers first treated the mice with an ART cocktail of three different drugs. Despite using strong concentrations of all three drugs, the researchers found that the virus managed to survive in in all tissues they analyzed, including the bone marrow, spleen, liver, lung, and gut.

Then they used a compound developed by co-authors Edward Berger, PhD, and Ira Pastan, PhD, from the National Institute of Allergy and Infectious Diseases (part of the National Institutes of Health). The compound is an antibody called 3B3 combined with a called PE38. The researchers hypothesized that the antibody would first recognize cells expressing a specific HIV protein on the surface of infected cells. The antibody would attach to the protein and allow the toxin to enter and kill the infected cells.

When Garcia's team treated humanized HIV-infected and ART-treated mice with the 3B3-PE38 compound and then looked for infected cells in tissues, they found that the molecular missile had killed the vast majority of persistent HIV-infected cells that had been actively producing the virus despite traditional therapy, resulting in a six-fold drop in the number of throughout the immune systems.

While this reduction fell short of complete eradication, the finding offers a new route of investigation as part of the multi-pronged "kick-and-kill" strategy.

"The BLT model represents a platform in which virtually any novel approach to HIV eradication can be tested," Garcia said. "It helps us prioritize which therapeutic approaches should be advanced to clinical implementation in humans. This study shows that it's possible to attack and kill hidden HIV-infected that standard therapy can't touch."

Explore further: New research shows promise for possible HIV cure

More information: PW Denton et al. Targeted cytotoxic therapy kills persisting HIV-infected cells during ART. PLOS Pathogens DOI: ppat.1003872 (2014).

Related Stories

New research shows promise for possible HIV cure

December 3, 2013
Researchers have used radioimmunotherapy (RIT) to destroy remaining human immunodeficiency virus (HIV)-infected cells in the blood samples of patients treated with antiretroviral therapy, offering the promise of a strategy ...

Innate immune system can kill HIV when a viral gene is deactivated

March 28, 2013
Human cells have an intrinsic capacity to destroy HIV. However, the virus has evolved to contain a gene that blocks this ability. When this gene is removed from the virus, the innate human immune system destroys HIV by mutating ...

Viral replication may not be primary cause of HIV-1 persistence in patients receiving cART

November 26, 2013
(Medical Xpress)—A team of researchers with members from Europe and the U.S. has found that viral replication may not be the main reason that the HIV virus is able to persist in the cells of infected patients for many years. ...

Hemophilia and long-term HIV infection—is there a protective link?

December 11, 2013
People with the genetic blood clotting disorder hemophilia who have been infected with HIV for decades have an increased proportion of immune cells in their blood that specifically target HIV. This protective immune response ...

Scientists find the invisibility cloak that shields HIV-1 from the immune system

November 21, 2013
Of the two major types of HIV, only one, HIV-1, typically causes AIDS in infected people who don't receive treatment. A study published by Cell Press November 21st in the journal Immunity reveals how HIV-1 escapes detection ...

Breast milk kills HIV and blocks its oral transmission in humanized mouse

June 14, 2012
More than 15 percent of new HIV infections occur in children. Without treatment, only 65 percent of HIV-infected children will live until their first birthday, and fewer than half will make it to the age of two. Although ...

Recommended for you

National roll-out of PrEP HIV prevention drug would be cost-effective

October 18, 2017
Providing pre-exposure prophylaxis (PrEP) medication to men who have sex with men who are at high risk of HIV infection (equivalent to less than 5% of men who have sex with men at any point in time) in England would be cost-effective, ...

Regulatory T cells harbor HIV/SIV virus during antiviral drug treatment

October 17, 2017
Scientists at Yerkes National Primate Research Center, Emory University have identified an additional part of the HIV reservoir, immune cells that survive and harbor the virus despite long-term treatment with antiviral drugs.

New research opens the door to 'functional cure' for HIV

October 17, 2017
In findings that open the door to a completely different approach to curing HIV infections, scientists from the Florida campus of The Scripps Research Institute (TSRI) have for the first time shown that a novel compound effectively ...

Researchers create molecule that could 'kick and kill' HIV

October 5, 2017
Current anti-AIDS drugs are highly effective at making HIV undetectable and allowing people with the virus to live longer, healthier lives. The treatments, a class of medications called antiretroviral therapy, also greatly ...

A sixth of new HIV patients in Europe 50 or older: study

September 27, 2017
People aged 50 and older comprise a growing percentage of HIV patients in Europe, accounting for one in six new cases in 2015, researchers said Wednesday.

Three-in-one antibody protects monkeys from HIV-like virus

September 20, 2017
A three-pronged antibody made in the laboratory protected monkeys from infection with two strains of SHIV, a monkey form of HIV, better than individual natural antibodies from which the engineered antibody is derived, researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.