Cell therapy shows remarkable ability to eradicate cancer in clinical study

February 19, 2014

Investigators from Memorial Sloan Kettering Cancer Center have reported more encouraging news about one of the most exciting methods of cancer treatment today. The largest clinical study ever conducted to date of patients with advanced leukemia found that 88 percent achieved complete remissions after being treated with genetically modified versions of their own immune cells. The results were published today in Science Translational Medicine.

"These extraordinary results demonstrate that cell therapy is a powerful treatment for patients who have exhausted all conventional therapies," said Michel Sadelain, MD, PhD, Director of the Center for Cell Engineering at Memorial Sloan Kettering and one of the study's senior authors. "Our initial findings have held up in a larger cohort of patients, and we are already looking at new clinical studies to advance this novel therapeutic approach in fighting cancer."

Adult B cell acute lymphoblastic leukemia (B-ALL), a type of blood cancer that develops in B cells, is difficult to treat because the majority of patients relapse. Patients with relapsed B-ALL have few treatment options; only 30 percent respond to salvage chemotherapy. Without a successful , few have any hope of long-term survival.

In the current study, 16 patients with relapsed B-ALL were given an infusion of their own genetically modified , called T cells. The cells were "reeducated" to recognize and destroy cancer cells that contain the protein CD19. While the overall complete response rate for all patients was 88 percent, even those with detectable disease prior to treatment had a complete response rate of 78 percent, far exceeding the complete response rate of salvage chemotherapy alone.

Dennis J. Billy, C.Ss.R, of Wynnewood, Pennsylvania, was one of the first patients to receive this treatment more than two years ago. He was able to successfully undergo a bone marrow transplant and has been cancer-free and back at work teaching theology since 2011. Paolo Cavalli, a restaurant owner from Oxford, Connecticut, remains in complete remission eight months after receiving his personalized T cell treatment.

A History of Scientific Achievements for Cell-Based Therapies

Cell-based, targeted immunotherapy is a new approach to treating cancer that harnesses the body's own immune system to attack and kill cancerous cells. Unlike with a common virus such as the flu, our immune system does not recognize as foreign and is therefore at a disadvantage in eradicating the disease. For more than a decade, researchers at Memorial Sloan Kettering have been exploring ways to reengineer the body's own T cells to recognize and attack cancer. In 2003, they were the first to report that T cells engineered to recognize the protein CD19, which is found on B , could be used to treat B cell cancers in mice.

"Memorial Sloan Kettering was the first center to report successful outcomes using this CD19-targeted approach in B-ALL patients," said Renier Brentjens, MD, PhD, Director of Cellular Therapeutics at Memorial Sloan Kettering and one of the study's senior authors. "It's extremely gratifying to witness the astonishing results firsthand in my patients, having worked for more than a decade developing this technology from the ground up."

In March 2013, the same team of researchers first reported the results of five patients with advanced B-ALL who were treated with cell therapy. Remarkably, all five patients achieved complete remissions.

Results Demonstrate Potential of New Therapy

In the current study, seven of the 16 patients (44 percent) were able to successfully undergo bone marrow transplantation—the standard of care and the only curative option for B-ALL patients—following treatment. Three patients were ineligible due to failure to achieve a complete remission, three were ineligible due to preexisting medical conditions, two declined, and one is still being evaluated for a potential bone marrow transplant. Historically, only 5 percent of patients with relapsed B-ALL have been able to transition to transplantation.

The study also provides guidelines for managing side effects of cell therapy, which can include severe flu-like symptoms such as fever, muscle pain, low blood pressure, and difficulty breathing, referred to as cytokine release syndrome. The researchers developed diagnostic criteria and a laboratory test that can identify which patients are at greater risk for developing this syndrome.

Additional studies to determine whether cell therapy can be applied to other types of cancer are already underway, and studies to test whether B-ALL would benefit from receiving targeted immunotherapy as frontline treatment are being planned.

Explore further: Immune therapy shows early promise for advanced leukemia

More information: "Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia," by M.L. Davila et al. Science Translational Medicine, 2014.

Related Stories

Immune therapy shows early promise for advanced leukemia

March 20, 2013
(HealthDay)—An experimental therapy that targets the immune system might offer a new way to treat an often deadly form of adult leukemia, a preliminary study suggests.

Immunotherapy showed promising antileukemia activity in pediatric patients

April 7, 2013
Researchers using patients' own immune cells in an immunotherapy approach called "anti-CD19 chimeric antigen receptor (CAR) T-cell therapy," achieved responses in children whose acute lymphocytic leukemia (ALL) had returned ...

T cell immunotherapy: Promising results in children and adults with leukemia

December 7, 2013
Nearly 90 percent of children and adults with a highly aggressive form of acute lymphoblastic leukemia (ALL) showed no evidence of cancer after receiving a novel, personalized cell therapy that reprograms a patient's immune ...

Gene therapy scores big wins against blood cancers

December 7, 2013
In one of the biggest advances against leukemia and other blood cancers in many years, doctors are reporting unprecedented success by using gene therapy to transform patients' blood cells into soldiers that seek and destroy ...

Common blood cancer may be initiated by single mutation in bone cells

January 22, 2014
Acute myeloid leukemia (AML) is a blood cancer, but for many patients the cancer may originate from an unusual source: a mutation in their bone cells.

Drug induces morphologic, molecular and clinical remissions in myelofibrosis

December 5, 2013
Imetelstat, a novel telomerase inhibiting drug, has been found to induce morphologic, molecular and clinical remissions in some patients with myelofibrosis a Mayo Clinic study has found. The results were presented today at ...

Recommended for you

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

ugosugo
not rated yet Feb 19, 2014
It is quite ironic that cutting edge science is allowing someone to keep teaching intelligent design

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.