New discovery paves the way for medicine for people with hearing disabilities

February 27, 2014

Researchers at Karolinska Institutet in Sweden have identified a biological circadian clock in the hearing organ, the cochlea. This circadian clock controls how well hearing damage may heal and opens up a new way of treating people with hearing disabilities.

Important body functions, such as sleep, the immune system, and hormone levels are controlled by a biological circadian clock. A team of researchers at Karolinska Institutet have now discovered that there is also a in the ear, controlled by genes known to regulate circadian rhythms. One of these genes was found to cycle in the cochlea from mice over several days in a pattern that followed the hours of the day.

By measuring the activity of the , the researchers found that mice exposed to moderate during the night suffered from permanent hearing damages while mice exposed to similar noise levels during the day did not. The ability to heal after hearing damage was therefore linked to the time of day during which the noise damage occured, and here the ear's played an important role.

It is known that the production of the growth hormone, BDNF, Brain-derived neurotrophic factor, known to protect auditory nerve cells, fluctuates throughout the day. When mice were exposed to noise during daytime, their concentration of BDNF in the ear increased, which protected them from permanent hearing damage. This protective response was absent at night time.

However, researchers succeeded in tricking the mice's ear clocks in an experiment where they exposed mice to noise at night while stimulating BDNF at the same time. Mice were then protected from permanent as their auditory nerve cells successfully recovered from noise injury.

These exciting new findings about the ear's clock, which is published in the prestigious journal Current Biology, may explain why we have different levels of noise sensitivity during different times of the day. The findings pave the way for new treatment methods for hearing damage, which affects between 10 and 15 per cent of the population. The results are for example important for shift workers in noisy environments, flight crews that travel quickly across time zones and people visiting concerts and discos with high noise levels.

"This fundamental discovery opens up an entirely new field of research and reveals some of the mysteries behind the unfamiliar auditory functions," says Barbara Canlon, professor of auditory physiology at the Department of Physiology and Pharmacology at Karolinska Institutet.

Explore further: Almost 12 percent of children between ages 6-19 have noise-induced hearing loss

More information: Current Biology, 17 March 2014 issue, online 27 February 2014.

Related Stories

Almost 12 percent of children between ages 6-19 have noise-induced hearing loss

February 20, 2014
(Medical Xpress)—Does your child or teen spend hours "plugged in" to an iPod? Tuning out may be doing more than irritating parents. It is estimated that almost 12 percent of all children between the ages of 6-19 have noise ...

Concert cacophony: Short-term hearing loss protective, not damaging

April 15, 2013
Contrary to conventional wisdom, short-term hearing loss after sustained exposure to loud noise does not reflect damage to our hearing: instead, it is the body's way to cope.

Tinnitus study signals new advance in understanding link between exposure to loud sounds and hearing loss

February 14, 2014
(Medical Xpress)—A research team investigating tinnitus, from the University of Leicester, has revealed new insights into the link between the exposure to loud sounds and hearing loss.

Hearing loss from loud blasts may be treatable, researchers say

July 1, 2013
Long-term hearing loss from loud explosions, such as blasts from roadside bombs, may not be as irreversible as previously thought, according to a new study by researchers at the Stanford University School of Medicine.

Can you hear me now? New strategy discovered to prevent hearing loss

July 6, 2012
If you're concerned about losing your hearing because of noise exposure (earbud deafness syndrome), a new discovery published online in the FASEB Journal offers some hope. That's because scientists from Germany and Canada ...

Researchers regenerate sound-sensing cells in the ears of mice with hearing damage

February 20, 2014
One of the major causes of hearing loss in mammals is damage to the sound-sensing hair cells in the inner ear. For years, scientists have thought that these cells are not replaced once they're lost, but new research appearing ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.