Immune cells need a second opinion: Decoding important mechanism which plays role in urinary tract infections

February 4, 2014, University of Bonn
In a urinary tract infection, the migration of neutrophils (red cell) from the blood (red vessel, above) to the infection is only possible following a consultation between helper (yellow) and sentinel macrophages (green). Via the positive signal of the helper macrophages (thumbs up), the sentinel macrophage produces the protein CXCL2 (key) which allows the neutrophils to migrate through the basal membrane of the uroepithelium (chain with lock). Credit: P. Schreiner and M. Gerhards/UKB

Bacterial urinary tract infections are a painful nuisance. A team of researchers led by scientists from the University of Bonn Medical Center has now decoded the way in which immune cells communicate with each other in defense against infections via the messenger tumor necrosis factor (TNF). The results are now being published in the renowned journal Cell.

Urinary tract infections are amongst the most frequent infections and are triggered by intestinal bacteria which invade the urogenital tract through smear infections via the urethra. These infections are persistent because the bacteria are often not completely killed off. Nowadays the painful disease can be treated with antibiotics, however the infection can cause chronic kidney damage and possibly even promote the development of bladder cancer. "For this reason, a better understanding of the body's own mechanisms of defense against is of great interest," says Prof. Dr. Christian Kurts from the Institute for Experimental Immunology of the University of Bonn Medical Center.

A group of researchers working with Prof. Kurts and his staff member Dr. Daniel Engel, in cooperation with an international team of scientists from Hamburg, Würzburg, Aachen, Leuven, Yale and Heidelberg, have now described a new immunoregulatory mechanism which controls the defense in infections. "Particularly powerful weapons of the immune system are the so-called ," says Dr. Engel. They are particularly effective at combating pathogens – especially bacteria.

Minimize collateral damage in the tissue as much as possible

The neutrophils circulate in the blood and immediately penetrate into infected tissue in order to fight invasive bacteria there. They either eat up the intruders or kill them off by releasing toxins. "These powerful defense mechanisms must be controlled well so that they cause as little collateral damage in the tissue as possible," reports Prof. Kurts. The neutrophils are regulated by other , known as macrophages. It has been known for a long time that macrophages produce various messengers which influence other immune cells. How they regulate the neutrophils has been unclear to date, however.

The team of researchers has now figured out that this regulation takes place through two types of macrophages. "An important result is that these two types of macrophages perform different functions," says Prof. Kurts. One type of macrophage is present in all tissues and exerts a sentinel function. As soon as pathogens penetrate, they are detected by these sentinel macrophages which then trigger an alarm. This takes place through the release of certain messenger moleculess, the chemokines, which lure the neutrophils into infected tissue – in the bladder, in this case.

Safety mechanism for potent defense cells

In addition, the sentinel macrophages lure the other type, which the scientists refer to as helper macrophages. These cells likewise discern that there is an infection and communicate this to the sentinel macrophages. The latter then begin to release other chemokines, which allows the neutrophils to reach the bacteria in the infected part of the bladder. "The sentinel macrophages obtain a second opinion as to whether the infection they discerned is so dangerous that the neutrophils should be activated," explains Dr. Engel. This is a safety mechanism whereby the potent defense cells only penetrate into the infected part of the bladder if there is actual danger.

The communication between the two types of macrophages takes place via the messenger (TNF). "This molecule plays a central role in various immune-mediated diseases," says Prof. Kurts. Using drugs that block TNF, rheumatoid arthritis or chronic inflammatory bowel disease, for example, can be treated very effectively. However, bacterial infections, including urinary tract infections, were often observed to be a side effect. The findings now available explain the cause: If this messenger is blocked, the macrophages can no longer communicate with each other, and for this reason, the neutrophils are no longer sent to the site of the infection.

Basis for the development of new treatment strategies

This mechanism was decoded within the framework of doctoral theses by Marzena Schiwon and Christina Weisheit from the University of Bonn Medical center. "It is fundamental for our understanding of the antibacterial immune response," says Prof. Kurts. The signaling pathway may also play an important role in infections of other organs. This discovery may represent the basis for the development of new treatment strategies against bacterial infections in general.

Explore further: Staphylococcus aureus bacteria turns immune system against itself

More information: Crosstalk between sentinel and helper macrophages permits neutrophil migration into infected uroepithelium, Cell, DOI: 10.1016/j.cell.2014.01.006

Related Stories

Staphylococcus aureus bacteria turns immune system against itself

November 19, 2013
Around 20 percent of all humans are persistently colonized with Staphylococcus aureus bacteria, a leading cause of skin infections and one of the major sources of hospital-acquired infections, including the antibiotic-resistant ...

Typhoid Fever: A race against time

January 16, 2014
The life-threatening disease typhoid fever results from the ongoing battle between the bacterial pathogen Salmonella and the immune cells of the body. Prof. Dirk Bumann's research group at the Biozentrum of the University ...

Jamming in tumors: How an immune molecule makes cancer cells starve

January 29, 2014
The name of the Interferon-beta (IFN-β) molecule and the English word "interfere" go back to the same Latin roots. And interfering is exactly what this messenger molecule, whose formation is increased in infections and cancer ...

New study of the molecular roots of recurrent bladder infections could lead to a vaccine

February 14, 2013
Urinary-tract infections are the second most common bacterial infection in humans, and many of them are recurrent. A study published by Cell Press on February 14th in the journal Immunity reveals the cellular and molecular ...

Researchers find new strategy to combat bacterial infections

January 29, 2014
Increasing numbers of bacteria are developing antibiotic resistance. This forms a significant challenge in the battle against bacterial infections. Alvin Lo and Han Remaut (VIB/Vrije Universiteit Brussel) have identified ...

Estrogen a new weapon against urinary tract infection in menopause

June 20, 2013
(Medical Xpress)—Estrogen stimulates the production of the body's own antibiotic and strengthens the cells in the urinary tract, according to a new study from Karolinska Institutet. The results, which are published in the ...

Recommended for you

Genomics reveals key macrophages' involvement in systemic sclerosis

January 18, 2018
A new international study has made an important discovery about the key role of macrophages, a type of immune cell, in systemic sclerosis (SSc), a chronic autoimmune disease which currently has no cure.

First vaccine developed against grass pollen allergy

January 18, 2018
Around 400 million people worldwide suffer in some form or other from a grass pollen allergy (rhinitis), with the usual symptoms of runny nose, cough and severe breathing problems. In collaboration with the Viennese firm ...

Researchers discover key driver of atopic dermatitis

January 17, 2018
Severe eczema, also known as atopic dermatitis, is a chronic inflammatory skin condition that is driven by an allergic reaction. In their latest study, researchers at La Jolla Institute reveal an important player that promotes ...

Who might benefit from immunotherapy? New study suggests possible marker

January 16, 2018
While immunotherapy has made a big impact on cancer treatment, the fact remains that only about a quarter of patients respond to these treatments.

Researchers identify new way to unmask melanoma cells to the immune system

January 16, 2018
system, which enables these deadly skin cancers to grow and spread.

How the immune system's key organ regenerates itself

January 15, 2018
With advances in cancer immunotherapy splashing across headlines, the immune system's powerful cancer assassins—T cells—have become dinner-table conversation. But hiding in plain sight behind that "T" is the organ from ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.