Scientists wake up to causes of sleep disruption in Alzheimer's disease

February 26, 2014
The fly brain is half a millimeter across and contains approximately 100,000 nerve cells (green). The A-beta peptide forms plaques (red) that are linked to nerve cell death and behavioral abnormalities in the flies. Credit: Dr. Stanislav Ott, Department of Genetics, University of Cambridge

Being awake at night and dozing during the day can be a distressing early symptom of Alzheimer's disease, but how the disease disrupts our biological clocks to cause these symptoms has remained elusive.

Now, scientists from Cambridge have discovered that in fruit flies with Alzheimer's the is still ticking but has become uncoupled from the sleep-wake cycle it usually regulates. The findings – published in Disease Models & Mechanisms – could help develop more effective ways to improve sleep patterns in people with the disease.

People with Alzheimer's often have poor biological rhythms, something that is a burden for both patients and their carers. Periods of sleep become shorter and more fragmented, resulting in periods of wakefulness at night and snoozing during the day. They can also become restless and agitated in the late afternoon and early evening, something known as 'sundowning'.

Biological clocks go hand in hand with life, and are found in everything from single celled organisms to fruit flies and humans. They are vital because they allow organisms to synchronise their biology to the day-night changes in their environments.

Until now, however, it has been unclear how Alzheimer's disrupts the biological clock. According to Dr Damian Crowther of Cambridge's Department of Genetics, one of the study's authors: "We wanted to know whether people with Alzheimer's disease have a poor behavioural rhythm because they have a clock that's stopped ticking or they have stopped responding to the clock."

The team worked with fruit flies – a key species for studying Alzheimer's. Evidence suggests that the A-beta peptide, a protein, is behind at least the initial stages of the disease in humans. This has been replicated in by introducing the human gene that produces this peptide.

Taking a group of healthy flies and a group with this feature of Alzheimer's, the researchers studied sleep-wake patterns in the flies, and how well their biological clocks were working.

They measured sleep-wake patterns by fitting a small infrared beam, similar to movement sensors in burglar alarms, to the glass tubes housing the flies. When the flies were awake and moving, they broke the beam and these breaks in the beam were counted and recorded.

To study the flies' biological clocks, the researchers attached the protein luciferase – an enzyme that emits light – to one of the proteins that forms part of the biological clock. Levels of the protein rise and fall during the night and day, and the glowing protein provided a way of tracing the flies' internal clock.

"This lets us see the brain glowing brighter at night and less during the day, and that's the biological clock shown as a glowing brain. It's beautiful to be able to study first hand in the same organism the molecular working of the clock and the corresponding behaviours," Dr Crowther said.

They found that healthy flies were active during the day and slept at night, whereas those with Alzheimer's sleep and wake randomly. Crucially, however, the diurnal patterns of the luciferase-tagged protein were the same in both healthy and diseased flies, showing that the biological clock still ticks in flies with Alzheimer's.

"Until now, the prevailing view was that Alzheimer's destroyed the biological clock," said Crowther.

"What we have shown in flies with Alzheimer's is that the clock is still ticking but is being ignored by other parts of the brain and body that govern behaviour. If we can understand this, it could help us develop new therapies to tackle sleep disturbances in people with Alzheimer's."

Dr Simon Ridley, Head of Research at Alzheimer's Research UK, who helped to fund the study, said: "Understanding the biology behind distressing symptoms like sleep problems is important to guide the development of new approaches to manage or treat them. This study sheds more light on the how features of Alzheimer's can affect the molecular mechanisms controlling sleep-wake cycles in flies.

"We hope these results can guide further studies in people to ensure that progress is made for the half a million people in the UK with the disease."

Explore further: Scientists identify the switch that says it's time to sleep

Related Stories

Scientists identify the switch that says it's time to sleep

February 19, 2014
The switch in the brain that sends us off to sleep has been identified by researchers at Oxford University's Centre for Neural Circuits and Behaviour in a study in fruit flies.

New fruitfly sleep gene promotes the need to sleep

February 4, 2014
All creatures great and small, including fruitflies, need sleep. Researchers have surmised that sleep – in any species—is necessary for repairing proteins, consolidating memories, and removing wastes from cells. But, ...

Study in fruitflies strengthens connection among protein misfolding, sleep loss, and age

February 20, 2014
Pulling an "all-nighter" before a big test is practically a rite of passage in college. Usually, it's no problem: You stay up all night, take the test, and then crash, rapidly catching up on lost sleep. But as we age, sleep ...

Disruption of biological clocks causes neurodegeneration, early death

January 10, 2012
New research at Oregon State University provides evidence for the first time that disruption of circadian rhythms – the biological "clocks" found in many animals – can clearly cause accelerated neurodegeneration, ...

Newly discovered molecule essential to resetting 'body clocks'

July 13, 2011
(PhysOrg.com) -- Research has shown that light is the key to getting our 'body clocks' back in sync and now a new study exploring the resynchronisation mechanism in insects has discovered a molecule essential to the process.

Recommended for you

Lifestyle changes to stave off Alzheimer's? Hints, no proof

July 20, 2017
There are no proven ways to stave off Alzheimer's, but a new report raises the prospect that avoiding nine key risks starting in childhood just might delay or even prevent about a third of dementia cases around the world.

Steering an enzyme's 'scissors' shows potential for stopping Alzheimer's disease

July 19, 2017
The old real estate adage about "location, location, location" might also apply to the biochemical genesis of Alzheimer's disease, according to new research from the University of British Columbia.

Brain scans may change care for some people with memory loss

July 19, 2017
Does it really take an expensive brain scan to diagnose Alzheimer's? Not everybody needs one but new research suggests that for a surprising number of patients whose memory problems are hard to pin down, PET scans may lead ...

Can poor sleep boost odds for Alzheimer's?

July 18, 2017
(HealthDay)— Breathing problems during sleep may signal an increased risk for Alzheimer's disease, a trio of studies suggests.

Hearing is believing: Speech may be a clue to mental decline

July 17, 2017
Your speech may, um, help reveal if you're uh ... developing thinking problems. More pauses, filler words and other verbal changes might be an early sign of mental decline, which can lead to Alzheimer's disease, a study suggests.

Bacteria found in Alzheimer's brains

July 17, 2017
Researchers in the UK have used DNA sequencing to examine bacteria in post-mortem brains from patients with Alzheimer's disease. Their findings suggest increased bacterial populations and different proportions of specific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.