Researchers identify candidate genes associated with free radicals

March 10, 2014 by Cal Powell, University of Georgia

(Medical Xpress)—Researchers led by a University of Georgia College of Family and Consumer Sciences faculty member have identified candidate genes associated with disease-causing free radicals.

By identifying the specific that influence the cell's ability to fight —the reactive molecules strongly linked with a variety of chronic diseases—researchers say the findings can be a starting point for future studies aimed at the origin of chronic illnesses such as and diabetes, for example.

"We can learn a lot about diseases if we know our risk factors for them," said Robert Pazdro, an assistant professor in the college's department of foods and nutrition. "Once we know the genes responsible, we can manipulate these genes in a way to prevent or slow disease."

The researchers' work focused on a molecule called glutathione, a small antioxidant found in abundance in human cells. Higher glutathione levels, generally speaking, equate to more protection for a person's tissues.

Using gene mapping techniques involving mice, Pazdro and his team identified that regulate glutathione levels in the kidneys and liver.

"What we discovered is they're different genes," Pazdro said. "That's what really makes this interesting because the subtle variation you have in your DNA can maybe make you more resistant to , whereas the variation I have can make me more resistant to ."

Pazdro's initial work began at the Jackson Laboratory, a Maine-based genetics research lab, and was funded there by a National Institutes of Health post-doctoral grant. He continued his work in the field upon joining UGA's department of foods and nutrition in 2013.

Pazdro noted this is the first time the genes that regulate glutathione concentration in tissues have been mapped.

"What this does is it guides future efforts to say which genes we should be looking at," Pazdro said.

Explore further: Potential molecular defence against Huntington's disease discovered

More information: Yang Zhou, David E. Harrison, Kimberly Love-Myers, Yi Chen, Arthur Grider, Kathie Wickwire, John R. Burgess, Mateusz A. Stochelski, Robert Pazdro, "Genetic Analysis of Tissue Glutathione Concentrations and Redox Balance," Free Radical Biology and Medicine, Available online 5 March 2014, ISSN 0891-5849, dx.doi.org/10.1016/j.freeradbiomed.2014.02.027.

Related Stories

Potential molecular defence against Huntington's disease discovered

August 25, 2013
Leicester geneticists have discovered a potential defence against Huntington's disease – a fatal neurodegenerative disorder which currently has no cure.

Research shows oral supplement increases body's storage of antioxidant

April 23, 2013
(Medical Xpress)—Oral supplementation of glutathione is effective in increasing the body's stores of the antioxidant, said Penn State College of Medicine researchers in study results presented at a conference today (April ...

Researchers discover effects of liver regenerating protein

October 23, 2013
Aging process in the human body is greatly influenced by the action of free radicals (byproducts of our own metabolism), but can be slowed down without the need to consume special dietary supplements if the HGF protein production, ...

Nano-dissection identifies genes involved in kidney disease

October 4, 2013
Understanding how genes act in specific tissues is critical to our ability to combat many human diseases, from heart disease to kidney failure to cancer. Yet isolating individual cell types for study is impossible for most ...

Study discovers novel therapeutic targets for Huntington's disease

February 27, 2014
A study led by researchers at Boston University School of Medicine (BUSM) provides novel insight into the impact that genes may have on Huntington's disease (HD). The study, published online in PLOS Genetics, identified specific ...

Epidemiologist uncovers new genes linked to abdominal fat

January 22, 2014
Excess abdominal fat can be a precursor to diseases such as cardiovascular disease, type 2 diabetes and cancer. A person's measure of belly fat is reflected in the ratio of waist circumference to hip circumference, and it ...

Recommended for you

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.