Common mutation is culprit in acute leukemia relapse

March 6, 2014
To identify the mutations that generated the most relapse-prone leukemia, the researchers competed single cancer cells against each other within a zebrafish. Credit: Jessica Blackburn/Massachusetts General Hospital

Harvard stem cell scientists have identified a mutation in human cases of acute lymphoblastic leukemia that likely drives relapse. The research, published in Cancer Cell, could translate into improved patient care strategies for this particular blood cancer, which typically affects children but is more deadly in adults.

In recent years, a trend toward single-cell analysis has shown that within a are capable of amassing to make them more aggressive and treatment resistant. So while 99% of a tumor may be destroyed by the initial treatment, a particularly aggressive cell can survive and then cause a cancer patient with the "all clear" to relapse six months later.

Harvard Stem Cell Institute Principal Faculty member David Langenau, PhD, and his lab members in the Department of Pathology at Massachusetts General Hospital used zebrafish to search for these rare, relapse-driving leukemia cells and then designed therapies that could kill these cells.

The researchers found that at least half of relapse-driving leukemic cells had a mutation that activated the Akt pathway, which rendered cells resistant to common chemotherapy and increased growth. From that insight, Langenau's lab next examined human and discovered that inhibition of the Akt pathway restored leukemic cell responses to front-line chemotherapy.

"The Akt pathway appears to be a major driver of treatment resistance," Langenau said. "We also show that this same pathway increases overall growth of leukemic cells and increases the fraction of cells capable of driving relapse."

Jessica Blackburn, PhD, the study's first author adds, "Our work will likely help in identifying patients that are prone to relapse and would benefit from co-treatment with inhibitors of the Akt pathway and typical front-line cancer therapy."

In addition to determining how best to translate this finding into the clinic, Langenau hopes to to identify other mutations that lead to . The work should identify a host of other potential drug targets for patients with aggressive leukemia.

The research took five-and-a-half years to complete, and has its origins as one of the first projects Langenau took on when he started his laboratory. The study was also the most labor-intensive project his lab members took on, with over 6,000 zebrafish transplant experiments.

Explore further: Cancer researchers discover pre-leukemic stem cell at root of AML, relapse

More information: Clonal evolution enhances leukemia-propagating cell frequency in T-cell acute lymphoblastic leukemia through Akt/mTORC1 pathway activation. Cancer Cell. March 6, 2014

Related Stories

Cancer researchers discover pre-leukemic stem cell at root of AML, relapse

February 12, 2014
Feb. 12, 2014) – Cancer researchers led by stem cell scientist Dr. John Dick have discovered a pre-leukemic stem cell that may be the first step in initiating disease and also the culprit that evades therapy and triggers ...

Rare form of leukemia found to originate in stem cells

February 13, 2014
(Medical Xpress)—An international team of researchers working out of the University of Toronto has found that one type of rare leukemia appears to get its start in stem cells. In their paper published in the journal Nature, ...

Two-pronged approach successfully targets DNA synthesis in leukemic cells

February 24, 2014
A novel two-pronged strategy targeting DNA synthesis can treat leukemia in mice, according to a study in The Journal of Experimental Medicine.

A promising new approach for treating leukemia discovered

February 13, 2014
A group of researchers at the Institute for Research in Immunology and Cancer (IRIC) of Université de Montréal discovered a promising new approach to treating leukemia by disarming a gene that is responsible for tumor progression. ...

Study involving twin sisters provides clues for battling aggressive cancers

February 9, 2014
Analyzing the genomes of twin 3-year-old sisters – one healthy and one with aggressive leukemia – led an international team of researchers to identify a novel molecular target that could become a way to treat recurring ...

Recommended for you

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.