Two-pronged approach successfully targets DNA synthesis in leukemic cells

February 24, 2014

A novel two-pronged strategy targeting DNA synthesis can treat leukemia in mice, according to a study in The Journal of Experimental Medicine.

Current treatments for (ALL), an aggressive form of blood cancer, include conventional chemotherapy drugs that inhibit DNA synthesis. These drugs are effective but have serious side effects on normal dividing tissues.

In order to replicate, cells must make copies of their DNA, which is made up of building blocks called deoxyribonucleotide triphosphates (dNTPs). Cells can either make dNTPs from scratch (the "de novo" pathway) or by picking up the breakdown products of cells death (the "salvage" pathway). Caius Radu and colleagues at the University of California, Los Angeles now show that blocking the de novo pathway using thymidine causes to switch to the salvage pathway. This may explain why thymidine showed limited effectiveness as a single agent in clinical trials. Blocking both the de novo and salvage pathways was lethal for leukemic cells. The authors also found that a novel small molecule inhibitor of the salvage pathway enzyme deoxycytidine kinase blocked leukemia growth in mice in combination with thymidine (to inhibit the de novo pathway). Importantly, there was no significant toxicity to normal blood cell development. Why leukemic cells and normal blood cell precursors respond so differently to this treatment requires further investigation.

According to Radu, "this new dual targeting approach shows that we can overcome the redundancy in DNA synthesis in ALL cells and identifies a potential target for metabolic intervention in ALL, and possibly in other hematological cancers."

This interdisciplinary study not only advances our understanding of DNA synthesis in but also identifies targeted metabolic intervention as a new therapeutic approach in ALL. Clinical trials will be required to establish whether these promising findings will translate into a new therapeutic approach for ALL.

Explore further: A promising new approach for treating leukemia discovered

More information: Nathanson, D.A., et al. 2014. J. Exp. Med. DOI: 10.1084/jem.20131738

Related Stories

A promising new approach for treating leukemia discovered

February 13, 2014
A group of researchers at the Institute for Research in Immunology and Cancer (IRIC) of Université de Montréal discovered a promising new approach to treating leukemia by disarming a gene that is responsible for tumor progression. ...

Study suggests way to fight therapy resistant leukemia by blocking DNA repair

August 8, 2013
New research posted online by the Nature journal Leukemia suggests blocking part of a DNA repair complex that helps some types of leukemia resist treatment can increase the effectiveness of chemotherapy and enhance survival.

Rare form of leukemia found to originate in stem cells

February 13, 2014
(Medical Xpress)—An international team of researchers working out of the University of Toronto has found that one type of rare leukemia appears to get its start in stem cells. In their paper published in the journal Nature, ...

Study involving twin sisters provides clues for battling aggressive cancers

February 9, 2014
Analyzing the genomes of twin 3-year-old sisters – one healthy and one with aggressive leukemia – led an international team of researchers to identify a novel molecular target that could become a way to treat recurring ...

Cancer researchers discover pre-leukemic stem cell at root of AML, relapse

February 12, 2014
Feb. 12, 2014) – Cancer researchers led by stem cell scientist Dr. John Dick have discovered a pre-leukemic stem cell that may be the first step in initiating disease and also the culprit that evades therapy and triggers ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.