Researchers testing gene therapy to thwart effects of multiple sclerosis

March 28, 2014 by April Frawley

(Medical Xpress)—In patients with multiple sclerosis, the body turns on itself, launching an immune system attack that destroys the coating around nerve fibers in the central nervous system, leaving them exposed like bare wires. Similar to exposed electrical lines, the unprotected fibers touch and short out, leading to the neurodegenerative effects that are a hallmark of multiple sclerosis.

But what if doctors could stop the immune response that destroys the protective coating before the disease becomes debilitating? University of Florida researchers have received a $40,000 grant from the National Multiple Sclerosis Society to test a technique in mice that aims to help the body not treat itself like a foreign invader—a process referred to as —in the earliest stages of multiple sclerosis. If the researchers can re-establish this tolerance, they could thwart the immune system attack, all with a technique that could be used on a wide number of patients.

"In previous years, we have learned a lot about how to manipulate tolerance using gene therapy," said Brad E. Hoffman, Ph.D., an assistant professor of pediatrics in the UF College of Medicine. "Tolerance is your body's way of not responding to substances that would otherwise induce an immune response so you don't have an immune response to everything. In multiple sclerosis, the body loses that ability to distinguish between self and not-self so it starts to attack its own nervous system cells."

About 2.3 million people worldwide suffer from multiple sclerosis, according to the National Multiple Sclerosis Society. The disease typically causes problems with vision, fatigue, speech, sensation and mobility. In advanced cases, multiple sclerosis can lead to blindness and paralysis.

Typically, gene therapy is used to correct a faulty gene in the body. In this case, researchers will deliver a gene responsible for a brain protein into the liver, via the harmless virus AAV, in hopes that it will spark production of regulatory T cells. These T cells, which suppress the , are crucial because they could effectively shut down the in the brain, Hoffman said. The researchers are injecting the gene specifically into the liver because the organ filters out unwanted immune responses.

"Everything filters through the liver for detoxification," Hoffman said. "Because of this, the liver has an innate capacity to induce immune tolerance. We have learned in other gene therapy studies that it is possible for the liver to make cells tolerant to the gene you are putting in."

Other research teams across the country are trying to spark immune tolerance to combat multiple sclerosis, too. However those studies involve developing treatments personalized for specific patients. The UF researchers' work is novel because they hope to develop a technique that could be used on a wide number of patients.

"Everyone has different types of T regulatory cells and receptors," Hoffman said. "By injecting a gene responsible for a brain protein, we are allowing an individual's body to make the specific T regulatory cells it needs.

"If it works, this is potentially more clinically feasible, cost-effective and translatable for a large scale."

Although gene therapy has yet to be used to correct autoimmune disorders such as multiple sclerosis, the foundations for the study are rooted in research Hoffman's team has performed while studying gene therapy for hemophilia. During these studies, the team was able to induce immune tolerance in mice, and Hoffman hopes the techniques will one day be able to help people with , too.

"Will we be able to cure MS? That would be ideal, but our strategy is more likely to result in suppressing the immune response to the ," he said. "If you suppress the , you will suppress the neurodegenerative effects and hopefully maintain a higher quality of life."

Explore further: New blood cells fight brain inflammation

Related Stories

New blood cells fight brain inflammation

February 16, 2014
Hyperactivity of our immune system can cause a state of chronic inflammation. If chronic, the inflammation will affect our body and result in disease. In the devastating disease multiple sclerosis, hyperactivity of immune ...

Extensive renewal of the T cell repertoire following autologous stem cell transplant in MS

February 17, 2014
A new study describes the complexity of the new T cell repertoire following immune-depleting therapy to treat multiple sclerosis, improving our understanding of immune tolerance and clinical outcomes.

Method to prevent rejection of disease-fighting proteins described

August 7, 2012
The body's natural reaction to reject replacement proteins represents a major obstacle to the successful use of gene therapy to cure a range of life-threatening diseases. A novel method that uses the body's own immune cells ...

Discovery of immune cells that protect against multiple sclerosis offers hope for new treatment

August 16, 2012
In multiple sclerosis, the immune system attacks nerves in the brain and spinal cord, causing movement problems, muscle weakness and loss of vision. Immune cells called dendritic cells, which were previously thought to contribute ...

Targeted gene therapy enhances treatment for Pompe disease

June 25, 2012
Gene therapy to replace the protein missing in Pompe disease can be effective if the patient's immune system does not react against the therapy. Targeted delivery of the gene to the liver, instead of throughout the body,suppresses ...

OSU finds new compound that could treat autoimmune diseases

March 21, 2014
(Medical Xpress)—Scientists at Oregon State University have discovered a chemical compound that could be a safer alternative for treating autoimmune diseases.

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.