New lab records the brain and body in action

March 6, 2014 by Laura Kurtzman
New lab records the brain and body in action
GlassBrain, a new imaging technology created by Gazzaley's team, creates vivid visualizations of the brain's electrical pulses in real time.

(Medical Xpress)—How does an autistic child take in information when he sits in a classroom abuzz with social activity? How long does it take someone with multiple sclerosis, which slows activity in the brain, to process the light bouncing off the windshield while she drives?

Until recently, the answers to basic questions of how diseases affect the brain – much less the ways to treat them – were lost to the limitations on how scientists could study brain function under real-world conditions. Most technology immobilized subjects inside big, noisy machines or tethered them to computers that made it impossible to simulate what it's really like to live and interact in a complex world.

But now UC San Francisco neuroscientist Adam Gazzaley, MD, PhD, is hoping to paint a fuller picture of what is happening in the minds and bodies of those suffering from brain disease with his new lab, Neuroscape, which bridges the worlds of neuroscience and high-tech.

In the Neuroscape lab, wireless and mobile technologies set research participants free to move around and interact inside 3-D environments, while scientists make functional recordings with an array of technologies. Gazzaley hopes this will bring his field closer to understanding how complex neurological and psychiatric diseases really work and help doctors like him repurpose technologies built for fitness or fun into targeted therapies for their patients.

The video will load shortly

"I want us to have a platform that enables us to be more creative and aggressive in thinking how software and hardware can be a new medicine to improve brain health," said Gazzaley, an associate professor of neurology, physiology and psychiatry and director of the UCSF Neuroscience Imaging Center. "Often, high-tech innovations take a decade to move beyond the entertainment industry and reach science and medicine. That needs to change."

As a demonstration of what Neuroscape can do, Gazzaley's team created new imaging technology that he calls GlassBrain, in collaboration with the Swartz Center at UC San Diego and Nvidia, which makes high-end computational computer chips. GlassBrain creates vivid, color visualizations of the structures of the brain and the white matter that connects them, as they pulse with electrical activity in real time.

These brain waves are recorded through electroencephalography (EEG), which measures electrical potentials on the scalp. Ordinary EEG recordings look like wavy horizontal lines, but GlassBrain turns the data into bursts of rhythmic activity that speed along golden spaghetti-like connections threading through a glowing, multi-colored glass-like image of a brain. Gazzaley is now looking at how to feed this information back to his subjects, for example by using the data from real-time EEG to make video games that adapt as people play them to selectively challenge weak brain processes.

Gazzaley has already used the technology to image the brain of former Grateful Dead drummer Mickey Hart as he plays a hypnotic, electronic beat on a Roland digital percussion device with NeuroDrummer, a game the Gazzaley Lab is designing to enhance through rhythmic training. Hart, whose brain is healthy, is collaborating with Gazzaley to develop the game and performed on NeuroDrummer while immersed in virtual reality on an Oculus Rift at the Neuroscape lab opening on March 5.

The Neuroscape lab will be available to all UCSF researchers who study the . And Gazzaley ultimately hopes it will aid in the development of therapies to treat diseases as various as Alzheimer's, , attention deficit and hyperactivity disorder, schizophrenia, autism, depression and .

Explore further: Neuroscientists find it's never too late to retrain brain

Related Stories

Neuroscientists find it's never too late to retrain brain

November 2, 2012
(Medical Xpress)—UCSF neuroscientists have found that by training on attention tests, people young and old can improve brain performance and multitasking skills.

Training the older brain in 3-D: Video game enhances cognitive control

September 4, 2013
Scientists at UC San Francisco are reporting that they have found a way to reverse some of the negative effects of aging on the brain, using a video game designed to improve cognitive control.

Real-time insight into our brain

March 4, 2014
Combining two imagine technologies, such as MRI for structure and MEG for activity, could provide a new understanding of our how our brain works.

Retraining the brain -- All is not lost, despite aging, injuries, or mental illness

November 18, 2011
(Medical Xpress) -- Our mature brains may not be so old and inflexible after all. Scientists are discovering that the human brain can improve its performance to counter the consequences of cognitive impairment and even the ...

New study on multitasking reveals switching glitch in aging brain

April 11, 2011
Scientists at the University of California, San Francisco have pinpointed a reason older adults have a harder time multitasking than younger adults: they have more difficulty switching between tasks at the level of brain ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.