Lack of coronin 1 protein causes learning deficits and aggressive behavior

March 26, 2014
Lack of coronin 1 protein causes learning deficits and aggressive behavior
The absence of coronin 1 in neurons results in severe neurobehavioral defects. Coronin 1 (green) in neurons within the amygdala of the brain. Red: neurofilament as neuronal marker; Blue: nuclear stain. Credit: University of Basel, Biozentrum

Learning and memory relies on the proper processing of signals that stimulate neuronal cells within the brain. Researchers at the Biozentrum of the University of Basel, together with an international team of scientists, has uncovered an important role for the protein coronin 1 in cognition and behavior. They found that a lack of coronin 1 in mouse and in man is associated with poor memory, defective learning and aggressive behavior. The results, recently published in PLOS Biology, identify a novel risk factor for neurobehavioral dysfunction and reveal a molecular pathway involved in transferring information within neurons.

Organisms must be able to sense signals from the outside and translate these into biochemical cues in order to adequately respond to their environment. This capability is also required to process information that reaches the brain. Within the brain, stimulation of neurons activates genes that are required, for example for . In collaboration with an international and interdisciplinary team the research group led by Prof. Jean Pieters from the Biozentrum, University of Basel, has now uncovered the role of an evolutionarily conserved protein, called coronin 1, in providing a link between the extracellular stimulus and neuronal activation that ultimately results in efficient learning and memory in both mice and men.

From the immune system to the brain

In earlier work, Pieters' team discovered the protein coronin 1 as being essential for the proper transduction of signals in immune cells. In mice lacking coronin 1 the researchers further investigated the molecular mechanism. Surprisingly, these mice showed aberrant behavior. In particular, mice lacking coronin 1 appeared to be far more aggressive and display extreme grooming activity, an indication of reduced sociability. An in-depth analysis in collaboration with scientists from the Friedrich Miescher Institute in Basel and the University of Bordeaux unveiled profound learning and behavioral problems and severe defects in the ability to activate neurons in the absence of coronin 1.

Activation of a signaling cascade

But how does coronin 1 ensure proper neurobehavioral functioning? Normally, stimulation of the cell surface results in an activation of an intracellular cascade of reactions and ultimately stimulates the production of the signaling molecule cAMP which then activates a number of processes, including the transcription of gene involved in neurobehavior. "We found that in the absence of coronin 1, cell surface stimulation leads to a defective cAMP production", explains Pieters. "This in turn affects the signal transduction which is finally responsible for the deficits in learning and memory formation."

Of mice and men

Furthermore, the researchers analyzed the clinical history of a patient lacking coronin 1 due to a mutation: it turned out that this patient showed learning defects and . With this study, Pieters and his project collaborators not only define a crucial role for coronin 1 in cognition and behavior, but also unravel a coronin 1-dependent signaling pathway that may be explored both for potential risk factors as well as future interventions to modulate neurobehavioral dysfunction.

Explore further: The benefits of a spotless mind

More information: Rajesh Jayachandran, Xiaolong Liu, Somdeb BoseDasgupta, Philipp Müller, Chun-Lei Zhang, Despina Moshous, Vera Studer, Jacques Schneider, Christel Genoud, Catherine Fassoud, Fréderic Gambino, Malik Khelfaoui, Christian Müller, Deborah Bartholdi, Helene Rossez, Michael Stiess, Xander Houbaert, Rolf Jaussi, Daniel Frey, Richard A. Kammerer, Xavier Deupi, Jean-Pierre de Villartay, Andreas Lüthi, Yann Humeau, and Jean Pieters. "Coronin 1 Regulates Cognition and Behavior through Modulation of cAMP/Protein Kinase A Signaling." PLOS Biology, published March 25, 2014 | DOI: 10.1371/journal.pbio.1001820

Related Stories

The benefits of a spotless mind

November 15, 2013
Alzheimer's disease is an age-related memory disorder characterized by the accumulation of clumps of the toxic amyloid-β (Aβ) protein fragment in the extracellular space around neurons in the brain. Drugs that help to 'clean ...

Forgetting is actively regulated

March 13, 2014
In order to function properly, the human brain requires the ability not only to store but also to forget: Through memory loss, unnecessary information is deleted and the nervous system retains its plasticity. A disruption ...

Learning and memory: How neurons activate PP1

November 4, 2013
A study in The Journal of Cell Biology describes how neurons activate the protein PP1, providing key insights into the biology of learning and memory.

Scientists discover protein's role in human memory and learning functions

February 19, 2014
Scientists at A*STAR's Institute of Molecular and Cell Biology (IMCB) have identified the precise role of the protein, SNX27, in the pathway leading to memory and learning impairment. The study broadens the understanding ...

Mechanism behind the activation of dormant memory cells discovered

February 20, 2014
The electrical stimulation of the hippocampus in in-vivo experiments activates precisely the same receptor complexes as learning or memory recall. This has been discovered for the first time and the finding has now been published ...

Recommended for you

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

New study reveals contrasts in how groups of neurons function during decision making

July 19, 2017
By training mice to perform a sound identification task in a virtual reality maze, researchers at Harvard Medical School and the Istituto Italiano di Tecnologia (IIT) have identified striking contrasts in how groups of neurons ...

Memory takes time, researchers conclude

July 19, 2017
How short-term memories become long-term ones has frequently been explored by researchers. While a definitive answer remains elusive, New York University scientists Thomas Carew and Nikolay Kukushkin conclude that this transformation ...

Researchers identify new target for chronic pain

July 19, 2017
Proteins must be in the right place at the right time in the cell to function correctly. This is even more critical in a neuron than in other cells because of its complex tree-like structure and its function. Researchers ...

Brains are more plastic than we thought

July 19, 2017
Practice might not always make perfect, but it's essential for learning a sport or a musical instrument. It's also the basis of brain training, an approach that holds potential as a non-invasive therapy to overcome disabilities ...

Healthy heart in 20s, better brain in 40s?

July 19, 2017
Folks with heart-healthy habits in their 20s tend to have larger, healthier brains in their 40s—brains that may be better prepared to withstand the ravages of aging, a new study reports.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Donna297
not rated yet Mar 26, 2014
I'd be interested to know more about what the implications of this research, and how it can help people. Specifically, what causes a lack of corontin 1?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.