Study tests range of electrical frequencies that help heal chronic wounds

March 4, 2014 by M.b. Reilly
This is a micro-fabricated device for live imaging of single cell response during electrical stimulation. Credit: Dottie Stover, U. of Cincinnati

Naturally occurring electricity in our cells is key to how our bodies function, and that includes the healing of wounds.

And externally applied low-amplitude electric fields have been shown to help hard-to-heal chronic wounds, like those associated with diabetes, where there is insufficient blood supply and drug treatments are not effective. The externally applied electric field manipulates the body's naturally occurring electricity, such that the new vessels are formed, and blood supply to the wound is increased.

University of Cincinnati physics and biomedical engineering researchers recently tested for the most-effective magnitude and frequency when applying an external low-amplitude electric field to vascular cells, which are key to healing . Physics doctoral student Toloo Taghian will present the results at the March 3-7 American Physical Society meeting in Denver. The title of her presentation is "Co-Regulation of Cell Behavior by Electromagnetic Stimulus and Extracellular Environment."

The team discovered that high-frequency electrical stimulus, similar to that generated by cell phones and Wi-Fi networks, increased the growth of blood vessel networks by as much as 50 percent, while low-frequency electrical stimulus did not produce such an effect. As part of their work, the UC team has developed a specialized antenna to apply the electrical signals to a localized wound, and that design is now the subject of a provisional patent.

How high-frequency electricity affects vascular cell growth

The high-frequency electrical stimulus is able to change the ionic environment surrounding the , which form the lining of blood vessels. Inside the cells, this stimulus can create links with proteins (proteins have existing charges that react with the applied electrical field) to activate pathway signals leading to growth in the capillary network. The high-frequency electrical stimulus also causes cells to produce chemicals called "growth factors" that help sustain growing vascular networks.

This image shows UC doctoral student Toloo Taghian, right, in a cell culture lab with biomedical engineering faculty member Daria Narmoneva culturing cells under the sterile conditions of a laminar flow hood. Credit: Dottie Stover, U. of Cincinnati

Said Taghian, "Electrical stimulation activates the pathway for angiogenesis (formation of new ), and the vascular network growth is enhanced. We can expect that, as a result, wound closure would be enhanced, leading to a faster healing."

The potential for electrical-based treatment of wounds is far reaching. Given the targeted, localized nature of such wound treatment, the application of electrical stimulus could replace or reduce the need for drug-based treatments which affect the entire body and may carry side effects. Importantly, such therapy could be applied using a hand-held device without the need to remove the wound dressing.

The stimulus frequency used by the team was as high as 7.5 billion cycles per second (Gigahertz, or GHz), and as low as 60 cycles per second (Hertz, or Hz), which is the same frequency used in 120V power outlets in the United States. The vascular tissue cells were exposed to the electrical fields for one hour per day for seven days, and the rate of was observed for 24 hours after each treatment.

Explore further: Research reveals why diabetes patients are at risk for microvascular complications

Related Stories

Research reveals why diabetes patients are at risk for microvascular complications

February 4, 2014
Patients with diabetes are at increased risk of microvascular complications, which develop when the body's small blood vessels become diseased. One of the most common problems results when wounds fail to heal properly, which ...

Bioengineered growth factors lead to better wound healing

February 20, 2014
Scientists at École Polytechnique Fédérale de Lausanne have greatly improved the effectiveness of clinical growth factors, paving new strategies for regenerative medicine.

New finding may help accelerate diabetic wound healing

October 30, 2013
University of Notre Dame researchers have, for the first time, identified the enzymes that are detrimental to diabetic wound healing and those that are beneficial to repair the wound.

Gene and stem cell therapy combination could aid wound healing

October 9, 2013
Johns Hopkins researchers, working with elderly mice, have determined that combining gene therapy with an extra boost of the same stem cells the body already uses to repair itself leads to faster healing of burns and greater ...

Researchers explain why some wound infections become chronic

December 17, 2013
Chronic wounds affect an estimated 6.5 million Americans at an annual cost of about $25 billion. Further, foot blisters and other diabetic ulcers or sores account for the vast majority of foot and leg amputations in the United ...

Breakthrough research discovery to help heal chronic wounds

December 14, 2012
(Medical Xpress)—The University of Queensland researchers have successfully restored wound healing in a model of diabetes paving the way for new treatments for chronic wounds.

Recommended for you

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

PPihkala
not rated yet Mar 31, 2014
Too bad they did not test anything below 60 Hz. I think I read that something like 5-7 Hz might be beneficial.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.