Similarity breeds proximity in memory, researchers find

March 5, 2014, New York University

Researchers at New York University have identified the nature of brain activity that allows us to bridge time in our memories. Their findings, which appear in the latest issue of the journal Neuron, offer new insights into the temporal nature of how we store our recollections and may offer a pathway for addressing memory-related afflictions.

"Our memories are known to be 'altered' versions of reality, and how time is altered has not been well understood," said Lila Davachi, an associate professor in NYU's Department of Psychology and Center for Neural Science and the study's senior author. "These findings pinpoint the brain activity that explains why remember some events as having occurred closer together in time and others further apart."

While our actual experiences are quite fluid and not neatly organized, our memories of them are discrete—like "beads on a string," Davachi explains. However, our recollections of the temporal distance among these events varies—in our memories, sometimes the beads are placed close together in time and sometimes they are spaced further apart.

The neurological process that explains why we place some memories closer together in time than we do others is not clear.

"Temporal information is a key organizing principle of , so it's important to understand where this organization comes from," Davachi said.

Understanding this process may lead to ways to address maladies of memory organization, such as schizophrenia, in which the ability to place recollections in temporal order is impaired.

Davachi and her co-author, Youssef Ezzyat, an NYU doctoral student, sought to shed light on this dynamic by studying the brain's hippocampus—a region known to play a significant role in memory.

In this experiment, the researchers had participants look at a series of pictures while monitoring using functional magnetic resonance imaging (fMRI). The participants viewed objects and faces that were separated in time; each stimulus was also paired with a picture of a scene. For every presentation, the participants were asked to imagine a scenario in which either the object or the face played a role in the scene they just viewed—the process was designed to create, or encode, a series of memories in the participants.

Later, after scanning, the participants performed a retrieval test in which they were presented with two stimuli (i.e., object and face) from the preceding phase and asked to indicate how far apart in time the two items were when they were encoded. Participants were given the following four response options: very close, close, far, and very far.

Their results showed a relationship between hippocampal activity and how close or far in time the participants placed their memories. When hippocampal activity was more stable across time, memories were remembered as having occurred closer together. By contrast, when hippocampal stability was diminished, participants were more likely to recall the memories as having occurred further apart in time.

"Clearly, the hippocampus is vital in determining how we recall the temporal distances between the many memories we hold, and similarity in the brain across time results in greater temporal proximity of those memories," Davachi says.

Explore further: Researchers discover key to the reduction of forgetting

Related Stories

Researchers discover key to the reduction of forgetting

December 12, 2013
A team of neuroscientists has found a key to the reduction of forgetting. Their findings, which appeared in the journal Neuron, show that the better the coordination between two regions of the brain, the less likely we are ...

Neuroscientists find a key to reducing forgetting—it's about the network

August 29, 2013
A team of neuroscientists has found a key to the reduction of forgetting. Their findings, which appear in the journal Neuron, show that the better the coordination between two regions of the brain, the less likely we are ...

Your memory is no video camera, it edits the past with present experiences

February 4, 2014
Your memory is a wily time traveler, plucking fragments of the present and inserting them into the past, reports a new Northwestern Medicine study. In terms of accuracy, it's no video camera.

When it comes to memory, quality matters more than quantity

February 4, 2014
The capacity of our working memory is better explained by the quality of memories we can store than by their number, a team of psychology researchers has concluded.

'Time cells' bridge the gap in memories of event sequences

August 24, 2011
The hippocampus is a brain structure that plays a major role in the process of memory formation. It is not entirely clear how the hippocampus manages to string together events that are part of the same experience but are ...

Neuroscientists identify how the brain remembers what happens and when

August 4, 2011
New York University neuroscientists have identified the parts of the brain we use to remember the timing of events within an episode. The study, which appears in the latest issue of the journal Science, enhances our understanding ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.