Fruitfly study: Epilepsy drug target implications for sleep disruption in brain disorders

April 1, 2014, University of Pennsylvania School of Medicine
This image shows the proximity of GABA-producing neurons (green) and glia (purple) in the fly brain. Credit: Amita Sehgal, Ph.D., Perelman School of Medicine, University of Pennsylvania

A new study in a mutant fruitfly called sleepless (sss) confirmed that the enzyme GABA transaminase, which is the target of some epilepsy drugs, contributes to sleep loss. The findings, published online in Molecular Psychiatry, were led by Amita Sehgal, PhD, head of the Chronobiology Program at the University of Pennsylvania's Perelman School of Medicine. The findings shed light on mechanisms that may be shared between sleep disruption and some neurological disorders. A better understanding of this connection could enable treatments that target both types of symptoms and perhaps provide better therapeutic efficacy.

"Epilepsy is essentially an increase-in-firing disorder of the brain and maybe a decrease in activity of the neurotransmitter GABA, too," says Sehgal, who is also a professor of Neuroscience and an investigator with the Howard Hughes Medical Institute (HHMI). "This connects our work to drugs that inhibit GABA transaminase. Changes in GABA transaminase activity are implicated in epilepsy and some other psychiatric disorders, which may account for some of the associated problems."

The team looked at the proteomics of the sss mutant brain – a large-scale study of the structure and function of related proteins—and found that GABA transaminase is increased in the sss brain compared to controls. This enzyme breaks down GABA, so GABA is decreased in the sss brain. Because GABA promotes sleep, there is a decrease in sleep in the sss mutant fly, as the name implies.

The relationship between the SSS protein and GABA is not fully understood. The SSS protein controls neural activity, and its absence results in increased neural firing, which likely uses up a lot of energy, says Sehgal. GABA transaminase works in the mitochondria, the energy-production organelle in the glial cells of the , which provide fuel for neurons. The large energy demand created by the increased neural firing in sss brains probably alters mitochondrial metabolism, including GABA transaminase function in glia.

In the sss mutant fly, there is a stream of connections that leads to its signature loss of sleep: The sss has increased neuron firing caused by downregulation of a potassium channel protein called Shaker. Recently, the Sehgal lab showed that SSS also affects activity of acetylcholine receptors. Both of these actions may directly cause an inability to sleep. In addition, increased energy demands on glia, which increase GABA transaminase and decrease GABA, may further contribute to sleep loss. On the other hand, if GABA is increased, then sleep is increased, as in flies that lack GABA transaminase.

Explore further: New fruitfly sleep gene promotes the need to sleep

Related Stories

New fruitfly sleep gene promotes the need to sleep

February 4, 2014
All creatures great and small, including fruitflies, need sleep. Researchers have surmised that sleep – in any species—is necessary for repairing proteins, consolidating memories, and removing wastes from cells. But, ...

Researchers identify gene that helps fruit flies go to sleep

March 13, 2014
In a series of experiments sparked by fruit flies that couldn't sleep, Johns Hopkins researchers say they have identified a mutant gene—dubbed "Wide Awake"—that sabotages how the biological clock sets the timing for sleep. ...

A new cell type is implicated in epilepsy caused by traumatic brain injury

March 11, 2014
Traumatic brain injury is a risk factor for epilepsy, though the relationship is not understood. A new study in mice, published in Cerebral Cortex, identifies increased levels of a specific neurotransmitter as a contributing ...

Research could lead to advances in treatment for neurological disorders, thyroid cancer

September 23, 2013
An innovative research project at Rutgers–Camden that combines computational and experimental science is uncovering information that could lead to advances in treatments for neurological disorders and thyroid diseases.

Conducting how neurons fire

November 25, 2011
Contrary to expectations that the neurotransmitter GABA only inhibited neuronal firing in the adult brain, RIKEN-led research has shown that it can also excite interneurons in the hippocampus of the rat brain by changing ...

Recommended for you

FDA approves brain stimulation device for OCD

August 17, 2018
(HealthDay)—A brain stimulation device to treat obsessive-compulsive disorder (OCD) has received approval for marketing Friday by the U.S. Food and Drug Administration.

Research eyes role of stress in mental illnesses

August 17, 2018
We all face stress in our lives. Even researchers seeking to understand why some people shrug it off while others face battles against disorders like depression or PTSD.

16 going on 66: Will you be the same person 50 years from now?

August 17, 2018
How much do you change between high school and retirement? The answer depends on whether you're comparing yourself to others or to your younger self.

Men and women show surprising differences in seeing motion

August 16, 2018
Researchers reporting in the journal Current Biology on August 16 have found an unexpected difference between men and women. On average, their studies show, men pick up on visual motion significantly faster than women do.

It's okay when you're not okay: Study re-evaluates resilience in adults

August 16, 2018
Adversity is part of life: Loved ones die. Soldiers deploy to war. Patients receive terminal diagnoses.

Expecting to learn: Language acquisition in toddlers improved by predictable situations

August 16, 2018
The first few years of a child's life are crucial for learning language, and though scientists know the "when," the "how" is still up for debate. The sheer number of words a child hears is important; that number predicts ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.