Enhancers serve to restrict potentially dangerous hypermutation to antibody genes

April 1, 2014

How B lymphocytes are able to direct mutations to their antibody genes to produce millions of different antibodies has fascinated biologists for decades. A new study publishing in the Open Access journal PLOS Biology on April 1 by Buerstedde and colleagues shows that this process of programed, spatially targeted genome mutation (aka. somatic hypermutation) is controlled by nearby transcription regulatory sequences called enhancers. Enhancers are usually known to control gene transcription, and these antibody enhancers are now shown to also act in marking the antibody genes as sites of hypermutation. This work illustrates how undesirable off-target effects of hypermutation can be spatially restrained.

Studies in the late eighties by the laboratories of two prominent immunologists, Ursula Storb and Michael Neuberger, provided some early evidence that the hypermutation process was targeted by sequences neighbouring . However, the phenomenon could not be nailed down, because the experimental set-up was laborious and hampered by background noise. Further confounding this analysis was the fact these sequences correspond to enhancers, and enhancers regulate , which happens to be another requirement for hypermutation. To overcome these hurdles, Buerstedde and colleagues developed a novel, highly sensitive, and carefully controlled assay with which they finally provide convincing evidence that enhancers play an important role in somatic hypermutation. The authors are particularly gratified that the new results vindicate earlier pioneering work, and thus resolve the often confusing scientific literature on this topic.

The experimental advantages of a chicken B cell line termed DT40 turned out to be the key to success. This is a little ironic as the DT40 model system has often been criticized for being artificial and of limited relevance for mice and man. However, human enhancers to antibody genes actually increased hypermutation in DT40 cells even more than equivalent sequences from chicken antibody genes. This works demonstrates once more the power of simple experimental models as well as the clear conservation of the targeting mechanism from chicken to humans.

While the study provides an unambiguous resolution of a long-standing question, more work on the precise molecular mechanism is required. Follow-up studies should focus on the interaction of , gene transcriptional machinery and AID (Activation-Induced Deaminase), the enzyme that initiates hypermutation. With respect to human disease it will be equally important to understand why the mutation targeting mechanism is not fool proof and why AID increases the background mutation rate throughout the genome of B lymphocytes leading to leukemia and lymphomas. It might be possible to use gene targeting to produce lethal mutations in precancerous AID expressing cells.

Explore further: New insight into why each human face is unique

More information: Buerstedde J-M, Alinikula J, Arakawa H, McDonald JJ, Schatz DG (2014) Targeting of Somatic Hypermutation by immunoglobulin Enhancer and Enhancer-Like Sequences. PLoS Biol 12(4): e1001831. DOI: 10.1371/journal.pbio.1001831

Related Stories

New insight into why each human face is unique

October 24, 2013
The human face is as unique as a fingerprint, no one else looks exactly like you. But what is it that makes facial morphology so distinct? Certainly genetics play a major role as evident in the similarities between parents ...

Researchers uncover a new function for an important player in the immune response

March 27, 2014
IRCM researchers led by Javier M. Di Noia, PhD, uncovered a new function of AID, a crucial enzyme for the immune response. The discovery, recently published by the scientific journal Proceedings of the National Academy of ...

Super-enhancers seen as 'Rosetta Stone' for dialog between genes and disease

October 10, 2013
Having recently discovered a set of powerful gene regulators that control cell identity in a few mouse and human cell types, Whitehead Institute scientists are now showing that these regulators—which they named "super-enhancers"—act ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.