Super-enhancers seen as 'Rosetta Stone' for dialog between genes and disease

October 10, 2013

Having recently discovered a set of powerful gene regulators that control cell identity in a few mouse and human cell types, Whitehead Institute scientists are now showing that these regulators—which they named "super-enhancers"—act across a vast array of human cell types and are enriched in mutated regions of the genome that are closely associated with a broad spectrum of diseases.

The findings, published online today by the journal Cell, suggest that these super-enhancers, first described in Cell several months ago by Whitehead Member Richard Young, could ultimately play important roles in disease diagnostics and therapeutics.

In April, Young reported that while the total number of genetic control elements is likely in the millions, only a few hundred super-enhancers regulate the key genes that give each cell its unique properties and functions. At the time, Young hinted that the discovery, which was based on work primarily in , would help to solve the regulatory circuitry of all . This latest research represents a significant step toward that goal, producing a catalog of super-enhancers in nearly 100 human cell and tissue types.

"We've gone from a few cells to a broad swath of human cell types to create this resource and make it available to the biomedical research community," says Young, who is also a professor of biology at MIT.

Young notes that the striking finding of the new study is that beyond their roles in control of healthy cells, super-enhancers are involved in regulating the function—and dysfunction—of diseased cells.

"We were surprised that for so many different diseases, mutations associated with the disease occur in super-enhancers" says postdoctoral scientist Brian Abraham, an author of the study. Indeed, he and other researchers in Young's lab found in disease-relevant genetic mutations associated with Alzheimer's disease, diabetes, and many in genomic regions under the control of specific super-enhancers.

The researchers also found super-enhancers operating in particularly insidious fashion across a broad spectrum of cancers, observing cancer assembling their own super-enhancers to overproduce malevolent oncogenes that drive such cancer hallmarks as hyperproliferation, invasion, and metastasis. Young believes that identifying, mapping, and disrupting super-enhancers could alter the way cancers are managed in the clinic.

"When we focus on personalized medicine for cancer patients, super-enhancers could serve as useful biomarkers for tracking and understanding the evolution of a person's cancer," says Young. "Ultimately, super-enhancers may well become important targets for therapeutic intervention."

This work was supported by grants from the National Institutes of Health (grants HG002668, CA109901, and CA146445).

Explore further: Genetic master controls expose cancers' Achilles' heel

More information: "Super-enhancers in the control of cell identity and disease", Cell, October 10, 2013

Related Stories

Genetic master controls expose cancers' Achilles' heel

April 11, 2013
In a surprising finding that helps explain fundamental behaviors of normal and diseased cells, Whitehead Institute scientists have discovered a set of powerful gene regulators dubbed "super-enhancers" that control cell state ...

Researchers find 'grammar' plays key role in activating genes

August 12, 2013
Researchers have probed deep into the cell's genome, beyond the basic genetic code, to begin learning the "grammar" that helps determine whether or not a gene gets switched on to make the protein it encodes.

Enhancer RNAs alter gene expression: New class of molecules may be key emerging 'enhancer therapy'

June 4, 2013
(Medical Xpress)—In a pair of distinct but complementary papers, researchers at the University of California, San Diego School of Medicine and colleagues illuminate the functional importance of a relatively new class of ...

About face: Long-ignored segments of DNA play role in early stages of face development

October 22, 2012
(Medical Xpress)—The human face is a fantastically intricate thing. The billions of people on the planet have faces that are individually recognizable because each has subtle differences in its folds and curves. How is ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.