Exact outline of melanoma could lead to new diagnostic tools, therapies

May 8, 2014
New research has outlined the exact process by which UVB radiation from the sun can cause melanoma. Credit: Oregon State University

Researchers at Oregon State University have identified a specific biochemical process that can cause normal and healthy skin cells to transform into cancerous melanoma cells, which should help predict melanoma vulnerability and could also lead to future therapies.

More than 70,000 cases of melanoma, the deadliest form of , develop in the U.S. every year.

The work was published today in PLoS Genetics, in work supported by the National Institutes of Health.

"We believe this is a breakthrough in understanding exactly what leads to cancer formation in melanoma," said Arup Indra, an associate professor in the OSU College of Pharmacy. "We've found that some of the mechanisms which ordinarily prevent cancer are being switched around and actually help promote it.

"In melanoma, the immune system is getting thrown into reverse," he said. "Immune cells that previously were attracted to help deal with a problem are instead repulsed."

The key to this process, the researchers said, is a protein called retinoid-X-receptor, or RXR. When present in an adequate amount, the RXR protein aids the proper operation of the immune response in the skin. Primary players in this are called , which produce protective pigments, or melanin, in response to exposure to ultraviolet radiation in sunlight – in simple terms, a suntan.

Even with this protection, however, both melanocytes and other skin cells called keratinocytes routinely suffer genetic damage. Sometimes the damage can be repaired, and at other times the – in the presence of adequate levels of RXR in the melanocytes – will kill the defective skin cells before they become malignant.

When expressed levels of RXR are too low in the melanocytes, however, this protective process breaks down. The chemicals that can help control mutated cells are actually suppressed, and the conditions for cancer promoted. DNA-mutated melanocytes begin to thrive at the same time other skin cells die and free up space for the growing, mutating melanocytes. The ultimate result can be the malignancy known as melanoma, which in turn can spread from the skin throughout the body.

"When there isn't enough RXR, the melanocytes that exist to help shield against cancer ultimately become part of the problem," Indra said. "It's routine to have from sunlight, because normally those cells can be repaired or killed if necessary. It's the breakdown of these control processes that result in , and that happens when RXR levels get too low."

This process has not before been outlined in its entirety, Indra said, and the new findings open several possibilities. One would be a diagnostic test to determine when RXR levels are lower than they should be – which would set the stage for and possibly other cancers, but also with careful monitoring facilitate earlier diagnosis.

Beyond that, mechanisms may be developed to stabilize or stimulate the levels of RXR expression, and form the basis for a therapy. This might be done through diet or a "nanocarrier" drug that could deliver RXR to cells, Indra said.

"It's quite possible that a new and effective therapy can now be developed, based on increasing levels of RXR," Indra said.

Explore further: A method for the diagnosis and prognosis of melanoma, the most aggressive skin cancer, is patented

Related Stories

A method for the diagnosis and prognosis of melanoma, the most aggressive skin cancer, is patented

February 19, 2014
UPV/EHU researchers have developed a method for the diagnosis and prognosis of cutaneous melanoma, the type of skin cancer with the highest mortality rate.This method will help not only in the more effective early detection ...

Protecting the skin from sun exposure

January 27, 2014
The ultraviolet radiation (UVR) present in sunlight is the most common environmental carcinogen, and long-term exposure to UVR can lead to skin cancer and premature aging of the skin. To develop better methods of protection ...

Scent of melanoma: New research may lead to early non-invasive detection and diagnosis

June 13, 2013
According to new research from the Monell Center and collaborating institutions, odors from human skin cells can be used to identify melanoma, the deadliest form of skin cancer. In addition to detecting a unique odor signature ...

Fast-acting virus targets melanoma in mice

June 17, 2013
(Medical Xpress)—Yale researchers eradicated most melanoma tumors by exposing them to a fast-acting virus, they report in the June 15 edition of the Journal of Virology.

Recommended for you

Could a green sponge hold cancer-fighting secrets?

July 27, 2017
A small green sponge discovered in dark, icy waters of the Pacific off Alaska could be the first effective weapon against pancreatic cancer, researchers said on Wednesday.

Stem cell therapy attacks cancer by targeting unique tissue stiffness

July 26, 2017
A stem cell-based method created by University of California, Irvine scientists can selectively target and kill cancerous tissue while preventing some of the toxic side effects of chemotherapy by treating the disease in a ...

Understanding cell segregation mechanisms that help prevent cancer spread

July 26, 2017
Scientists have uncovered how cells are kept in the right place as the body develops, which may shed light on what causes invasive cancer cells to migrate.

Study uncovers potential 'silver bullet' for preventing and treating colon cancer

July 26, 2017
In preclinical experiments, researchers at VCU Massey Cancer Center have uncovered a new way in which colon cancer develops, as well as a potential "silver bullet" for preventing and treating it. The findings may extend to ...

Compound shows promise in treating melanoma

July 26, 2017
While past attempts to treat melanoma failed to meet expectations, an international team of researchers are hopeful that a compound they tested on both mice and on human cells in a petri dish takes a positive step toward ...

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.