Study explores genetics behind Alzheimer's resiliency

May 2, 2014

Autopsies have revealed that some individuals develop the cellular changes indicative of Alzheimer's disease without ever showing clinical symptoms in their lifetime.

Vanderbilt University Medical Center memory researchers have discovered a potential genetic variant in these asymptomatic individuals that may make brains more resilient against Alzheimer's.

"Most Alzheimer's research is searching for genes that predict the disease, but we're taking a different approach. We're looking for genes that predict who among those with Alzheimer's pathology will actually show clinical symptoms of the disease," said principal investigator Timothy Hohman, Ph.D., a post-doctoral research fellow in the Center for Human Genetics Research and the Vanderbilt Memory and Alzheimer's Center.

The article, "Genetic modification of the relationship between and neurodegeneration," was published online recently in the journal Alzheimer's and Dementia.

The researchers used a marker of Alzheimer's disease found in cerebrospinal fluid called phosphorylated tau. In brain cells, tau is a protein that stabilizes the highways of cellular transport in neurons. In Alzheimer's disease tau forms "tangles" that disrupt cellular messages.

Analyzing a sample of 700 subjects from the Alzheimer's Disease Neuroimaging Initiative, Hohman and colleagues looked for genetic variants that modify the relationship between phosphorylated tau and lateral ventricle dilation—a measure of disease progression visible with magnetic resonance imaging (MRI). One genetic mutation (rs4728029) was found to relate to both ventricle dilation and cognition and is a marker of neuroinflammation.

"This gene marker appears to be related to an inflammatory response in the presence of phosphorylated ," Hohman said.

"It appears that certain individuals with a toward a 'bad' neuroinflammatory response have neurodegeneration. But those with a genetic predisposition toward no inflammatory response, or a reduced one, are able to endure the pathology without marked neurodegeneration."

Hohman hopes to expand the study to include a larger sample and investigate gene and protein expression using data from a large autopsy study of Alzheimer's disease.

"The work highlights the possible mechanism behind asymptomatic Alzheimer's disease, and with that mechanism we may be able to approach intervention from a new perspective. Future interventions may be able to activate these innate response systems that protect against developing Alzheimer's symptoms," Hohman said.

Explore further: New Alzheimer's research suggests possible cause: The interaction of proteins in the brain

Related Stories

New Alzheimer's research suggests possible cause: The interaction of proteins in the brain

June 19, 2013
For years, Alzheimer's researchers have focused on two proteins that accumulate in the brains of people with Alzheimer's and may contribute to the disease: plaques made up of the protein amyloid-beta, and tangles of another ...

Chronic sleep disturbance could trigger onset of Alzheimer's

March 18, 2014
People who experience chronic sleep disturbance—either through their work, insomnia or other reasons—could face an earlier onset of dementia and Alzheimer's, according to a new pre-clinical study by researchers at Temple ...

Potential biomarkers for the diagnosis of Alzheimer's disease

January 31, 2014
Researchers identify abnormal expression of genes, resulting from DNA relaxation, that can be detected in the brain and blood of Alzheimer's patients.

Brain cell activity regulates Alzheimer's protein

February 26, 2014
Increased brain cell activity boosts brain fluid levels of a protein linked to Alzheimer's disease, according to new research from scientists at Washington University School of Medicine in St. Louis.

Genetic markers ID second Alzheimer's pathway

April 4, 2013
Researchers at Washington University School of Medicine in St. Louis have identified a new set of genetic markers for Alzheimer's that point to a second pathway through which the disease develops.

Team discovers a way to potentially slow down Alzheimer's disease

March 20, 2014
Researchers at the University of Texas Medical Branch at Galveston have discovered a way to potentially halt the progression of dementia caused by accumulation of a protein known as tau.

Recommended for you

Lifestyle changes to stave off Alzheimer's? Hints, no proof

July 20, 2017
There are no proven ways to stave off Alzheimer's, but a new report raises the prospect that avoiding nine key risks starting in childhood just might delay or even prevent about a third of dementia cases around the world.

Blood test identifies key Alzheimer's marker

July 19, 2017
A new study led by researchers at Washington University School of Medicine in St. Louis suggests that measures of amyloid beta in the blood have the potential to help identify people with altered levels of amyloid in their ...

Steering an enzyme's 'scissors' shows potential for stopping Alzheimer's disease

July 19, 2017
The old real estate adage about "location, location, location" might also apply to the biochemical genesis of Alzheimer's disease, according to new research from the University of British Columbia.

Brain scans may change care for some people with memory loss

July 19, 2017
Does it really take an expensive brain scan to diagnose Alzheimer's? Not everybody needs one but new research suggests that for a surprising number of patients whose memory problems are hard to pin down, PET scans may lead ...

Can poor sleep boost odds for Alzheimer's?

July 18, 2017
(HealthDay)— Breathing problems during sleep may signal an increased risk for Alzheimer's disease, a trio of studies suggests.

Hearing is believing: Speech may be a clue to mental decline

July 17, 2017
Your speech may, um, help reveal if you're uh ... developing thinking problems. More pauses, filler words and other verbal changes might be an early sign of mental decline, which can lead to Alzheimer's disease, a study suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.